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INTRODUCTION 
EARLY DETECTION IS VITAL FOR BIOSECURITY RESPONSES 

Invasive species are those that establish and proliferate in areas outside their natural range after 
human introduction (Kolar and Lodge 2001; Lodge et al. 2006; Perrings et al. 2002). Increases in 
trade (both legal and illegal), tourism, intensification of agriculture and deliberate releases all greatly 
exacerbate the impact of invasive species on global economic, environmental, social and cultural 
assets (Bradshaw et al. 2021; Perrings et al. 2002). Invasive species can be nearly impossible to 
eradicate once established in previously unoccupied areas. Early detection of incursions is therefore 
critical if control actions are to be both effective and affordable (Larson et al. 2020). Technology that 
assists with early detection can help provide managers with the best chance of initiating a rapid 
response.  

Numerous methods are currently being applied to invasive species surveillance, including: 

• conducting environmental sampling for species-specific DNA (e.g. CISS project P01-I-004;
Larson et al. 2020; McDonald et al. 2020; Ruppert et al. 2019)

• monitoring electronic trade in wildlife (Stringham et al. 2020)

• application of lures to enhance trapping success (e.g. starlings, Campbell et al. 2012;
European wasp [currently unpublished]; Asian black-spined toad, Caley et al. 2022)

• capitalising on the surveillance potential of citizen scientists (e.g. Atlas of Living Australia’s
DIGIVOL platform; the Western Kimberley rubber vine Aquila project; WA Department of
Primary Industries and Regional Development’s MyPestGuide app)

• using remote sensing devices, including cameras, acoustic detectors and LiDAR [light
detection and ranging] sensors (reviewed in Juanes 2018).

ACOUSTIC DETECTION CAN IMPROVE THE FOOTPRINT OF PEST 
SURVEILLANCE 

Many animals in both terrestrial and aquatic habitats generate unique sounds (including ultrasonic 
sounds) that can be recorded on acoustic recording unit (ARU) sensors (e.g. Shonfield and Bayne 
2017; Barber-Meyer et al. 2020; Sousa-Lima et al. 2013; Britzke et al. 2013; Walters et al. 2012). A 
sensor is a device that detects or measures a physical or biological property, permitting responses 
such as records, alerts or control.  

Acoustic recording devices have expanded the utility of simple surveys at different scales so that data 
can be recorded, digitised, saved, scanned, compared to known libraries and easily mapped (Juanes 
2018). Such sensors permit an efficient, non-invasive and taxonomically broad means to study wildlife 
populations (including incursions of invasive species) and monitor wildlife community responses to 
environmental change and anthropogenic influences (reviewed in Gibb et al. 2019). To date, ARUs 
have predominantly been applied to conservation/biodiversity assessment programs – for example, 
detecting the presence of rare, cryptic species (Armstrong et al. 2021) – with minimal application to 
the detection of invasive species. Notable exceptions (reviewed in Juanes 2018) come from Australia 
where ARUs have been applied with mixed success to detect cane toads (Rhinella marina) at 
incursion fronts (Tingley et al. 2017), and acoustic lures have been trialled on both cane toad and 
Asian black-spined toad (Duttaphrynus melanostictus) traps to try to improve trapping efficacy (Muller 
et al. 2020; Caley et al. 2022). 

Automated acoustic surveillance can potentially increase the spatial and temporal footprint of 
surveillance. However, one of the key challenges facing the integration of ARUs into large-scale 
invasive species management programs is the ease with which operators can effectively manage the 

https://friendsofthefitzroy.com.au/?page_id=24
https://www.agric.wa.gov.au/pests-weeds-diseases/mypestguide
https://www.agric.wa.gov.au/pests-weeds-diseases/mypestguide
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ensuing ‘big data’. Reliable automated data analysis is required to free operators from the burden of 
manually verifying thousands of hours of sound recordings. However, it is important to emphasise that 
whilst surveillance for new biological invasions can be transformed by changes in both how the 
environment is monitored and who is doing the monitoring (Caley et al. 2022), surveillance is only 
valuable if it is linked to management responses that can rapidly prevent the spread and/or impact(s) 
of invasive species (Larson et al. 2020).  

KEEPING WESTERN AUSTRALIA STARLING-FREE 

Starlings (Sturnus vulgaris) are an aggressive generalist species identified by the International Union 
for Conservation of Nature and Natural Resources as one of the 100 worst invasive species globally. 
Starlings feed on arthropods and other ground-dwelling organisms, grain crops and horticultural 
produce. They consume and spoil livestock feed, foul stock water points and livestock with 
excrement, are vectors for disease, foul and damage public and private amenities, and compete with 
native fauna for resources (particularly nesting hollows). Approximately 1 million km2 in WA is 
considered highly suitable habitat for starlings (Kirkpatrick 2008). An area this size could support up to 
12.5 million starlings, potentially causing losses of more than $176 million annually to WA agriculture 
(Campbell et al. 2016). 

The WA starling management program aims to prevent starlings from establishing, and is unique in 
terms of longevity (> 50 years of near-continuous management), scale (> 10,000 km2) and outcome 
(starlings are not established in WA). Despite these successes, modelling (Anderson 2009, 2017; 
Campbell et al. 2015) indicates that additional spatial and temporal surveillance is required to keep 
WA starling-free. 

OBJECTIVES 

The key research objectives were to: 

• Develop and demonstrate a remote acoustic surveillance, detection and reporting solution,
using starlings as an initial case study.

• Develop and demonstrate the application of the remote acoustic detection solution for
additional, high-priority invasive pest animal(s).

• Communicate outcomes and promote end-user uptake of the technology.



5 

METHODS 
INTEGRATING AUTOMATED ACOUSTIC RECORDING UNITS INTO 
LANDSCAPE-SCALE INVASIVE ANIMAL CONTROL PROGRAMS 

Adoption of ARUs into ongoing wildlife management programs requires that the technology be: 

• durable 

• reliable 

• accurate 

• upgradable 

• accompanied by automated data analysis. 

DEVELOPING A COMPREHENSIVE STARLING CALL REFERENCE LIBRARY 

We drew upon three primary sources of reference data to build the starling call reference library for 
this project:  

1. In 2011, 50 ARUs (SongMeter2, Wildlife Acoustics) were deployed throughout habitat at high 
risk of starling incursion on the south coast of WA. They were programmed to record for 
several hours every day at dawn and dusk, and for 5–10 minute intervals every hour 
(Campbell et al. 2013). A subset of the resulting 27 terabytes of recordings assisted the 
evolution of algorithm development.  

2. During 2011 and 2012, high-quality reference calls from starlings were collected from several 
locations in SA using a handheld digital recorder (Nagra BB+) and directional microphone 
(Campbell et al. 2013). These annotated calls were incorporated into the training of the 
current starling convolutional neural network (CNN) algorithm.  

3. New SA recordings were collected from Adelaide city, Cape Jervis and several other locations 
on the Fleurieu Peninsula using a Bioacoustics Audio Recorder (BAR) (Frontier Labs), a 
Rode NTG-2 shotgun microphone connected to a Zoom H1n digital audio recorder, and the 
CM4 prototype (all recordings taken at a sampling rate of 48 kHz). 

TRAINING THE MODEL TO RECOGNISE STARLING CALLS 

Using our comprehensive reference library of starling calls, we trained a one-dimensional CNN to 
recognise three main call types. The model available for broadscale deployment was trained with 
10,553 calls comprising the three starling call types (n = 6,377) and other signals (n = 4,176) from 
field test sites in SA, plus 8,329 non-target signals from WA (95.5% accuracy, 95.7% precision, 95.4% 
recall).  

The starling CNN has been trained to recognise three call types: two variations on a ‘buzz’ call 
sequence (Figures 1a and b) and a shrill descending whistle (Figure 1c). 
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1a)

1b)

1c) 

Figure 1. Spectrograms (time versus frequency) illustrating the three call types detected by the starling CNN; two 
variations on a starling ‘buzz’ call sequence (a,b) and also a shrill descending whistle (c). 
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SOFTWARE RESOURCES 

CREATING AND TRAINING THE STARLING-DETECTION ALGORITHM 

To develop the bioacoustic recording and processing system, we first tested several different analysis 
approaches before settling on the development of the CNN-based system. A Masters of Engineering 
student project (University of Adelaide) developed systems for the recording and classification of 
starling calls. They used Python and bash scripts, feature extraction with mel-frequency cepstral 
coefficients, tested filtering and noise-removal options and used K-Nearest Neighbour to allocate 
target detections. These were all running within a Docker container on a balenaFin 1.1 
(https://www.balena.io/fin/) microcomputer that was remotely controllable through the balenaCloud 
resource (https://www.balena.io/cloud/). 

We developed a feature extraction and classification analysis pipeline using functions from several 
bioacoustics-related packages in the [R] statistical computing language (bioacoustics, Marchal et al. 
2021; monitoR, Hafner and Katz 2018; warbleR, Araya-Salas and Smith-Vidaurre 2017). 
Classification was tested using linear Discriminant Function Analysis and random forest walks. Initial 
tests with both these pipelines demonstrated that the rate of false-positive detections was likely to be 
prohibitively large for the intended application.  

The CNN-based pipeline was also first developed and tested on both an NVIDIA Jetson Nano 
Developer Kit (V3) (https://developer.nvidia.com/embedded/jetson-nano-developer-kit) and a 
Raspberry Pi 4 model B (https://www.raspberrypi.com/products/raspberry-pi-4-model-b/). Both 
these hardware devices were successful in running the CNN pipeline steps from recording through to 
classification, but ultimately the Raspberry Pi Compute Module 4 and IO board 
(https://www.raspberrypi.com/products/compute-module-4-io-board/) were chosen on the basis of  
power management and communications.  

Three main resources were produced for the CNN analysis pipeline by Thomas Rowntree, Senior 
Research Engineer at the Australian Institute of Machine Learning, University of Adelaide. The first 
(‘Training Code’) is a custom routine written in Python, used to train the CNN model with both starling 
calls and non-target signals of various types.  

The second (‘Runtime Code’) is a signal classification pipeline within a Docker container environment, 
used to apply the trained CNN model to field recordings on the microcomputer. It ran a pipeline 
comprising the following steps from recording to storing the outputs of signal classification: 

• Sound detection: Sound is taken from the microphone and analogue-to-digital converter and
is transferred into computer memory, at a sampling rate of 48 kHz.

• Feature extraction and CNN model classification: The CNN model is applied to a 5-minute
segment of this audio stream in real time using mel-frequency cepstral coefficients for feature
extraction. A vector of probability scores reflecting the degree of model to signal match across
this audio stream is produced.

• Segmentation: Signals that match the CNN model with a probability score above a chosen
threshold are identified as starlings. The threshold score is set by the user based on
performance testing results. For performance testing, all signals with a probability score of
0.50 and above were saved, and for field tests currently being undertaken in WA, a probability
score of 0.96 is used to achieve the best compromise between the rate of false-positive signal
rejection and incorrect target signal rejection.

• Saving for validation: Segmented signals are saved at the midpoint within a buffered length
of audio stream to a total of five seconds. These five-second snippets are saved as 16-bit
48 kHz WAV sound files, with filenames encoding information about snippet date and start
time, and the probability score for the detection.

https://www.balena.io/fin/
https://www.balena.io/cloud/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/compute-module-4-io-board/
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• Saving for further development: Each 5-minute segment of audio stream analysed in real 
time is saved as a date/time-stamped 16-bit 48 kHz WAV file, for archival purposes. This 
allowed performance assessment of the various CNN model versions and will ultimately be 
excluded in the most mature pipeline to be deployed widely.  

• Logging and housekeeping: A log file is produced of all recordings, and WAV recordings 
accumulate in an ‘outputs for validation’ directory. 

The third CNN resource (‘Desktop Runtime Code’) was a modified version of the Runtime code, 
designed to run on a desktop computer and take archived field recordings on an external drive as the 
input. This was used to process the 2011 recordings made with Song Meters in WA, and to provide a 
resource of likely false-positive signal types that would be present in the WA soundscape. This 
resource was used to re-train the CNN model again to reduce the false positives requiring manual 
validation. 

We trained the CNN model and then performance evaluated the model in an iterative process, 
beginning with the development based on signals from Adelaide city, followed by more intensive field 
testing at a site at Cape Jervis with an early prototype of the chosen Compute Module 4 (CM4) 
hardware, and resulting in full deployment at two sites in WA.  

The model versions include: 

• Model0: First model produced with legacy and newly collected Adelaide city reference calls. 
Initial testing within Adelaide city. 

• Model1: Improved model based on field recordings from Cape Jervis, Clayton Bay and 
Adelaide city. Evaluated via field test 1 at Cape Jervis using a CM4 hardware prototype. 

• Model2: Improved model based on verified output from first field test (based on further 
examples of labelled true and false positives). Evaluated in second field test using a CM4 
hardware prototype and deployed in WA at two tower sites.  

• Model3: Model with additional training to reject false positives (derived from Model2 when run 
over historical Song Meter data with the Desktop Runtime code). 

• Model4+: Future model(s) to be re-trained to reject false positives accumulated in the 
broadscale deployment in WA. 

ADDING EXTRA FUNCTIONS TO THE FIELD DEVICE 

Several additional scripts were developed to ensure the final field device was fully automated, and 
could be remotely queried and updated without end users opening the device in the field. A 
management controller enabled the following to be undertaken: 

• waking of the main central processing unit (CPU) as scheduled (e.g. relative to sunset/sunrise 
times) 

• gathering of solar data on an hourly basis (total energy and battery status) and reporting this 
data to the main CPU on request 

• operating the external indicator LEDs 

• listening for Bluetooth connections and commands 

• instructing the main CPU to enable or disable wi-fi (providing security and power savings) 

• handling failure scenarios. 
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The main controller was developed with the following functionality: 

• upon waking, retrieve location and synchronise time 

• start the Long-Term Evolution (LTE) communications and monitoring system 

• set the time on the management controller to ensure synchronisation 

• retrieve any update configuration from the cloud 

• set the next wake-up time with the management controller 

• retrieve solar data from the management controller 

• report wake-up and solar data to the cloud 

• start the Docker container housing the detection system 

• await detection messages and attempt to send them to the cloud (or queue them for later if 
initial delivery fails) 

• stop the detector as scheduled 

• report sleep state to the cloud 

• turn off communications and shut down. 

DEVELOPING A USER INTERFACE THAT MEETS PROGRAM AND USER 
NEEDS 

The user interface (Detect-It) went through several development iterations until we built an interface 
that was going to meet the program's needs. This involved starling-program discovery sessions 
between DKB Solutions and the starling team. Development packs for each phase were generated 
from these sessions. The development packs produced an agreed product canvas (Figure 2a), 
personas for end users, a user story map (Figure 2b), and the user interface functions and 
acceptance criteria to support them (Figure 2c). Software development was conducted using agile 
software development methodologies, resulting in a minimum viable product that then underwent user 
acceptance testing over a short time frame. Additional functionality was then added and tested to 
achieve all in-scope items. 

2a) 
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2b) 

 

2c) 

 

Figure 2. Schematic representation of the early consultation and planning that facilitated development of the 
online end-user application ‘Detect-It’. 

ON-BOARD PROCESSING AND REMOTE COMMUNICATIONS 
ELIMINATE THE NEED FOR REGULAR SITE VISITS 

The device design dramatically reduces the amount of data required to be transferred off the device 
and negates further processing. The design uses edge computing architecture that exploits large 
computer power processes and stores data in the field before sending data to back-end services. Via 
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a custom user interface, program managers can view high-detection-probability events sent from 
devices via long-term evolution (LTE) Cat-M1 low-bandwidth communications to cloud services. 

Both the main unit and the battery box are waterproofed ABS boxes, with additional waterproofing 
added during deployment (with epoxy resin coating around external connector points and box seals). 
The dual microphones are waterproofed, omnidirectional condensers with a signal-to-noise ratio of 
80 dB at 1 kHz and a sensitivity of –28 db ± 3 dB at 1 kHz (only one is used currently – selectable with 
redundancy). 

The computing module is a Rasp Pi CM4 with eMMC, rather than an SD card, for improved reliability. 
The device uses a 20 Ah LiFePo4 battery, which is recharged via a solar regulator connected to a 
100 W lightweight PET solar panel. Capacity refinements can be made from energy studies of the 
devices. There is a low-power custom management controller (always on) that collects the energy 
data and manages the wake and sleep cycles of the main processor. An operator in the field can 
connect to this controller via Bluetooth on a mobile device to operate it outside normal cycles, to avoid 
opening the casing (e.g. users can remotely wake the main CPU and engage the wi-fi and other 
communication elements).  

We used both an online tool to investigate signal strength (based on antennae location and 
propagation information) plus a custom network scanner device to measure signal strength of the 
LTM Cat-M1 network onsite. Both these approaches enabled us to select sites with suitable coverage 
to ensure effective communication of detections from field devices. We applied the information from 
the Australian Communications and Media Authority web portal to predetermine antenna height, 
power levels, gain, relevant beam width and azimuth. The Yagi antennae (15 element, 14 dBi, 
700 MHz, Band 28) attached to a 2-m pole atop the main mast was then directed towards the most 
effective communications tower. The main 4.2-m galvanised mast was cemented 0.8 m into the 
ground and anchored by four guy wires, each rated to 1 tonne of pressure via hydraulically driven 
anchors. The device also contains a GPS for both time synchronisation and locating itself on every 
wake.  

TESTING THE ACOUSTIC RECORDING UNITS’ COMMUNICATIONS, 
ALGORITHM PERFORMANCE AND MICROPHONE SENSITIVITY 

Once the towers were installed at both sites, we conducted playback experiments to test onboard 
communications, algorithm performance and microphone sensitivity. Example recordings of both the 
buzz and whistle starling call sequences were loaded onto a microSD card and projected at 70–90 dB 
(measured at 1 m with a Lutron SL-4011 sound-level meter) towards the ARU from a portable 
Bluetooth speaker (Xeneo) attached to the end of a 4-m telescopic pole (to simulate the height of a 
starling calling from a small tree). Recordings were played every 10 m up to 150 m along five evenly 
spaced radial transects around the ARU. To assess the playback results, we remotely downloaded 
approximately 2.5 hours of field recording for the period that the playback experiments occurred, and 
manually annotated all discernible starling calls. For further validation, we reviewed the detections 
communicated from the ARU to the cloud server in real time. 

  

https://web.acma.gov.au/rrl/register_search.main_page
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RESULTS 
REFINING THE CNN DETECTION ALGORITHM 

A highly accurate and precise bioacoustics-based starling call recording and recognition system has 
been produced and field-tested. Key to this was the design and implementation by Thomas Rowntree 
(formally, Australian Institute of Machine Learning). The detection model was produced by the one-
dimensional CNN method and is embedded in a routine that records signals from the microphone, 
classifies signals within the audio stream in real time, and outputs results and example snippets of 
putative target signals ready for communication back to base. Specifically, there were five core 
software resources created during the project: 

• Training code: a routine to train a new CNN model on a desktop computer.

• Runtime code: Python and shell scripts to create a Docker environment, record an audio
stream, run the CNN model over the audio stream, and save five-second sound file snippets
containing putative signals. Five-minute files were also saved in field tests to allow
performance evaluation.

• Desktop Runtime code: a subset of the Runtime code that enables running the CNN model
over bulk data fed into a desktop computer. It enabled collation of false positives from
archived WA Song Meter recordings.

• Other: additional scripting to handle power management and communications between the
CM4 and cloud-based server.

• Detect-It: a cloud-based environment enabling efficient visualisation and validation of
potential targets collected from all field devices.

The CNN model development was iterative, starting at Model0 and reaching Model3 by the end of this 
project. The performance of each CNN model version was evaluated with field-collected data, then 
each model was refined using the outputs from each evaluation. For training, field-collected data was 
mainly derived from Adelaide city and several sites on the Fleurieu Peninsula for Model0, 
predominantly from Cape Jervis for Model1 and Model2, and from the 2011 WA Song Meter 
recordings for Model3.  
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LOW DETECTION AND HIGH FALSE-POSITIVE RATES FOR FIRST ITERATION OF STARLING 
ALGORITHM 

During training, we calculated the accuracy, precision and recall of Model1. In a three-week field trial 
at Cape Jervis, SA, we further evaluated its performance by manually verifying putative detections 
(correct identifications and incorrect false-positive identifications). Both the full recording from the field 
test, and the putative detections (five-second files) were used for manual verification. The true-
positive identification rates expected for buzz, whistle and both call types combined is depicted in 
Figure 3a, with the rate of true positives given for each probability score (level of confidence in the 
result). For Model1, 50.9% of true starling calls are detected, with 49.1% of true starling calls missed 
at a probability threshold of 0.96. For this first iteration of the CNN, the false-positive rate at a 
probability threshold of 0.96 was unacceptably high, with 22.2% of all returned snippets labelled 
incorrectly as starling (Figure 3b). 

3a) 

 

3b) 

 

Figure 3. Plots of true positive (a) and false positive (b) rates for starling CNN Model1.  Probability score 
(confidence) on the x-axis and rate as a percentage of total true positives recovered (a) and percentage of 
returned detections (snippets) that were incorrect (i.e. not starling) (b). Vertical blue line indicates 0.96 Probability 
threshold. 
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PROBABILITY OF DETECTION INCREASES WITH MODEL 2 AFTER RETRAINING WITH CALLS 
THAT MODEL1 FAILED TO IDENTIFY.   

To improve model performance, we manually checked all recordings from the first field test for starling 
calls that were missed (i.e. labelled with a probability score of 0.50 or less by Model1). These missed 
calls were re-labelled as positives and fed back for re-training. The resulting Model2 detected a much 
greater proportion of starling calls (63.6% detected at probability threshold of 0.96). Detection rate of 
the whistle call type was greatly improved from Model1. These increases in performance by Model2 
(Figure 4a) were gained without jeopardising the false-positive rate, which was also reduced to 4.2% 
at a 0.96 threshold rate (Figure 4b). The 36.4% of true starling calls missed by Model2 are typically 
very faint, low-quality examples; the model performs very well on good-quality repeated calls (Figure 
5). Model2 is now installed on the two detection towers in the field and performs with 95.5% accuracy, 
95.7% precision and 95.4% recall. 

4a) 

4b) 

Figure 4. Plots of true positive (a) and false positive (b) rates of detection for starling CNN Model2.  Probability 
score (confidence) on the x-axis and rate as a percentage of total true positives recovered (a) and percentage of 
returned detections (snippets) that were incorrect (i.e. not starling) (b).  Vertical blue line indicates 0.96 
Probability threshold. 
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5a) 

5b) 

Figure 5. Cumulative plots illustrating the proportion of starling calls detected for a given probability threshold (x-
axis) for buzz call types (a) and whistle call type (b).  Most starling calls are recognised with a high probability.  
The small proportion of calls with low probability scores (left hand side tail of plots) are those calls that have low 
signal quality relative to background noise, for example those generated by birds calling too far from the 
microphone, or unfavourable background noise during high wind. 

MODEL 3 WAS RE-TRAINED WITH NON-TARGET SIGNALS FROM ARCHIVED WA 
RECORDINGS 

After installing field listening towers with Model2, we developed a Desktop Runtime code to process 
the terabytes of field recordings collected on Song Meter recorders (Wildlife Acoustics) in WA in 2011 
(Campbell et al. 2013). Model3 has been retrained with 8,329 non-target signals from the starling 
management program area on the south coast of WA. Further analysis is required to quantify the 
improvement in accuracy, precision and recall for Model3. 

STARLINGS MODEL TRAINING CODE WAS USED AS A BLUEPRINT FOR CALL DETECTION 
OF OTHER SPECIES  

The first version of a similar bioacoustics-based detection system for the Asian black-spined toad has 
been trained on recordings provided by a global network of collaborators. These include recordings 
made in India, Indonesia, Madagascar, and Singapore. The output model (Model_0) is ready for a 
small-scale field test in a habitat with challenges such as other frog calls, signal sources and 
overlapping calls of the target species. 
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The training code developed to train the starling CNN model was applied to a new dataset of 561 
Asian black-spined toad target calls and 523 non-target call signatures, resulting in the generation of 
a Model_0 for Asian black-spined toad acoustic detection. These calls consist of long call train bursts 
of variable duration (approximately 12 seconds long) that consist of repeated pulses spanning the 
frequency range 0.5–4.0 kHz (Figure 6). 

 

Figure 6. Waveform (top) and spectrogram of an example Asian black-spined toad call with time on the x-axis 
and frequency (not displayed, but between 0.5 – 4kHz) on the y-axis.  Inset image illustrates detail of the four 
pulses within the long 12-second call train. 

AUTOMATED STARLING ACOUSTIC RECORDING UNITS CAN DETECT 
CALLS UP TO 70 M AND RECORD CALLS AT 150 M AWAY 

Two permanent ARU towers for starling surveillance were successfully installed at Bremer Bay (April 
2022) and Gibson (May 2022) in WA. Both sites have a history of starling incursions, and the towers 
will provide additional ongoing starling surveillance for the Department of Primary Industries and 
Regional Development’s starling management program. The towers (Figure 8a–c) were operational 
from the day of installation, with proven end-to-end communication of acoustic signals to cloud 
servers over the Telstra LTE Cat-M1 network and were available via the Detect-It user interface 
(Figure 7). Two additional towers have been commissioned and will be permanently installed at 
strategic locations selected for the suitability of starling habitat and history of known incursions. 

Preliminary investigation of playback recordings indicate that the devices are capable of recording 
starling calls at a distance of (and potentially beyond) 150 m. Whilst the playback files could be 
manually verified via listening and viewing of spectrograms (RavenPro, Cornell Lab) of the full 
recordings downloaded from the ARU, the maximum distance that the onboard algorithm was able to 
positively identify the starling playback calls was approximately 70 m. Beyond 70 m, we suggest that 
the signal-to-noise ratio is insufficient and the CNN is unable to confidently identify the calls (with a 
probability of > 0.96). Further investigation into the influence of both biotic (e.g. other bird calls) and 
abiotic variables (e.g. wind, rain or anthropogenic noises) is required to provide a quantitative 
assessment of the ‘detection footprint’ for each ARU. It is likely that this footprint will be variable, but 
we have a high level of confidence that our system will communicate a positive detection for all high 
signal-to-noise ratio starling calls. 

Evidence of noise clipping was present when the devices were set to the highest gain. This was 
reduced by setting a normalised gain. Other induced noise was detected in some circumstances once 
the device was operational in remote locations, which were not evident during prototype development 
and testing in both Singapore and Adelaide. Future iterations of the detectors will remedy this. Lastly, 
although the south-west of WA seems to be well serviced by Telstra's 700 MHz network, Nullarbor 
coverage is much more limited and could impact where the current system can deliver additional 
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starling surveillance. This information can be confirmed through the Australian Communications and 
Media Authority web portal and will change as additional Telstra towers are constructed. 

DETECT-IT USER INTERFACE 

Every positive detection communicated over Telstra’s LTE Cat-M1 network is displayed as a single 
line via the Detect-It user interface with associated metadata including Event ID, Device ID, 
Confidence level and Date/Time Stamp (Figure 7a). Users can hover over and enlarge the thumbnail 
spectrogram image from this landing page for a quick visual review of the spectrogram for each 
detection, and action (verify) each detection if the outcome (starling/not starling) is very clear at this 
point. Alternatively, users can further investigate individual detections by viewing the full spectrogram, 
playing back the five-second audio, downloading the audio, locating the detection on a map, 
annotating and sharing detections (Figure 7b). Buffering the call signal identified by the algorithm 
within a five-second window of surrounding audio provides the end user a much clearer context for 
the detection, with a more realistic listening experience to help assess the true source of the signal. 

Figure 7. Screen shots from ‘Detect-It’, user interface for viewing, verifying, listening to, annotating, mapping, 
archiving and sharing putative detections returned from the CNN onboard the starling field ARUs 

https://web.acma.gov.au/rrl/register_search.main_page
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8a) 

8b) 
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8c) 

Figure 8. a) Automated recording unit (ARU) with two omni-directional microphones positioned beneath Lithium-
Ion solar charged battery.  Split conduit piping surrounds exposed cabling to provide protection from wildlife.  b) 
Four guy wires ratcheted to one tonne of pressure hold the 6m galvanised central mast (c) which supports the 
ARU, battery, solar panel and Yagi antennae. 

APPLICATION 

EXPANDING THE FOOTPRINT OF TRADITIONAL SURVEILLANCE 

By deploying fully automated, remote, passive acoustic surveillance technology to expand the 
footprint of starling surveillance in remote locations, we have demonstrated how early acoustic 
detection could facilitate an effective control response.  

Starling numbers in WA are  predicted to grow exponentially, with slow initial increases followed by a 
rapid increase over a 10-year period (Anderson 2017). Enhancing the current management regime by 
increasing surveillance will help keep starling numbers low and help prevent this pest species from 
establishing in WA. The ARU technology we developed and tested is one way the program may cost-
effectively increase starling surveillance, noting that an effective control response is still required to 
remove any detected starlings. The project team will participate in an online workshop (Tuesday 8th 
November with Department of Primary Industries and Regional Development staff and management 
involved with the starling program to discuss options for a large-scale rollout of ARU surveillance 
technology under its ongoing program. 
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DISCUSSION 
THE NEXT STEPS FOR THE PROJECT TEAM 

A draft commercialisation and utilisation strategy has been prepared for CISS outlining how the 
products of this project could potentially be used by other end users, and which presents a potential 
pathway (the detection hub/wildlife monitoring portal) to apply the technology in other programs. 

We also intend to: 

• Investigate the influence of abiotic variables on detection radius with statistical modelling.

• Re-engage with the international Asian black-spined toad research community to enhance
availability of test files.

• Further develop the commercialisation strategy.

• Continue verifying false-positive signals from Bremer Bay and Gibson towers.

• Investigate the source and possible fix of ‘noise’ returned intermittently from towers.

• Present findings at Queensland University of Technology’s bioacoustics symposium
(November 2022).

• Present findings at Australasian Wildlife Management Society (December 2022) New Zealand
conference.

• Facilitate collaboration with Department of Biodiversity, Conservation and Attractions to
re-train CNN with the existing Western ground parrot call reference library.

• Prepare grant applications to support rollout of passive acoustic surveillance technology for
starlings ‘at scale’ throughout the south coast of WA.

• Continue collaborations and prepare proposals to support integration of passive acoustic
surveillance technology into a broader ‘detection hub’ along with thermal and visual artificial
intelligence technology.

• Continue sharing the innovative technology we have developed with the international
research community and identify additional end users.

STARLING CNN MODEL HAS BROADSCALE POTENTIAL FOR OTHER 
SPECIES OF INTEREST 

Re-training the CNN with a reference library of Asian black-spined toad calls has demonstrated the 
broader applicability of this technology to other species. Sharing the project resources allows both 
conservation and biosecurity programs to benefit from the application of automated acoustic 
surveillance, enabling earlier detections and rapid responses. Proving the suitability of our CNN 
algorithm for other species via the Desktop Runtime code is the first step in sharing the project 
resources. Subsequently, both biosecurity (e.g. Asian black-spined toad) and conservation (e.g. 
Western ground parrot) programs could integrate their species-specific algorithm with the hardware 
and communication solutions developed under this project.  

The Invasive Animal Ltd. board has approved the licensing of the Desktop Runtime code developed in 
this project to SA Department of Environment and Water and WA Department of Biodiversity, 
Conservation and Attractions for non-commercial purposes. Some adjustments may be required for 
the design of other species’ ARUs (e.g. placement of microphones for ground-dwelling species). 
Specific challenges to communication of data from alternative placements would require planning but 
are not insurmountable.  
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WHAT HAVE WE LEARNED? 

REMOTE, FULLY AUTOMATED ACOUSTIC DETECTION IS POSSIBLE 

Our solution supports and improves field monitoring programs in what can be considered a step-
change, when compared with current monitoring methods. We have enabled: 

• autonomous field units operating year-round

• near-real-time notifications of high probability starling events with call processing via the
onboard algorithm, call storage and communication to transfer call event data

• one user interface displaying each call event with time, location, audio playback and
spectrogram analysis

• the latest field data available to end users without the burden of retrieving historical data from
the field.

SECURE, PERMANENT INFRASTRUCTURE IS EASY TO USE 

Specialised hydraulic anchoring equipment can safely secure galvanised masts to support solar 
powered field units year-round. Each fully autonomous field unit runs wake/sleep, battery level, 
communication checks and data-transfer protocols. Field visits to update or inspect units are no 
longer required with remote software updates. Data stored securely in the cloud places the solution at 
the forefront of technology and support with Amazon Web Services (AWS) MQTT messaging and the 
AWS core.  

ACCURATE, PRECISE AND RELIABLE AUTOMATED DATA ANALYSIS IS POSSIBLE 

Machine learning approaches have proven successful for developing an automated starling detection 
algorithm with high performance and, encouragingly, few false-positive detections. The training script 
developed from this project enables other users to re-train the CNN framework with calls from other 
species of interest, allowing both conservation and biosecurity programs to efficiently analyse vast 
volumes of surveillance data.  
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Summary 

This final report 1  presents details of the development and testing of a one-dimensional 

Convolutional Neural Network (CNN) model trained to recognise buzz and whistle calls of a 

pest bird, the European (or common) starling Sturnus vulgaris. The model forms part of a 

bioacoustic recording and analysis pipeline conducted onboard an acoustic ‘sentinel’ planned 

for deployment in remote areas of southern Western Australia to detect and allow expedient 

response to starling incursions from South Australia. The output detection CNN model is 

suitable for broad-scale field deployment and further iterative updates.  

Reference calls of starlings used to build the CNN model came predominantly from recordings 

at two main locations in Adelaide city, and five locations on the Fleurieu Peninsula south of 

Adelaide. The main source of calls and the site for field testing was at a residence at Cape 

Jervis where recorders could be placed close to where a resident flock of starlings settled 

regularly in nearby trees, drank from a garden pond, and bred in nest boxes. 

A full recording and analysis pipeline was produced by Thomas Rowntree (Senior Research 

Engineer, Australian Institute of Machine Learning, University of Adelaide) that runs in a 

Docker container within a version of Linux. It is suitable for the chip architecture and fully 

functional on the chosen hardware device—a 64-bit Raspberry Pi Compute Module 4 on the 

Raspberry Pi IO board and a custom Analogue to Digital Converter from Lynxemi Pte Ltd to 

facilitate sound recordings. The code resources produced include a Training code routine to 

produce (‘train’) CNN models; a Runtime code routine to classify signals, with the CNN model 

embedded within a bioacoustic recording and signal processing pipeline running within a 

Docker container; and a Desktop Runtime code routine that allows classification of signals that 

have been recorded previously and archived on disk. 

The CNN model was improved incrementally through various iterations by training it with 

starling calls (two types of buzz call, and a descending whistle), non-target signals from South 

Australia, and non-target signals from relevant soundscapes in Western Australia. The 

performance of two major iterations of the model (Model1, Model2) was assessed following 

the deployment of a prototype Raspberry Pi Compute Module 4 at the site at Cape Jervis that 

had resident starlings. Model performance was assessed in two different ways: as metrics of 

Accuracy, Precision and Recall; and as calculated rates of True Positives, False Negatives 

and False Positives derived from manual inspection and validation of identifications in the both 

the 5-second WAV snippets containing putative True Positives and those that were missed but 

available in archived 5-minute WAV files comprising a continuous recording of the test period. 

A guide to understanding how these performance measures are calculated is provided in a 

glossary and an appendix. 

A significant improvement was observed when the validated and labelled output from Model1 

was used to train Model2. The detection rate for starling calls increased overall, but particularly 

for whistles, and the rate of False Positive detections was reduced significantly.  

The metrics of Accuracy, Precision and Recall available from the training process were all 

relatively high for both Model1 and Model2 were relatively high (Model1: 97%, 97%, 98%, 

 
1 In support of Centre for Invasive Species Solutions Project No. P01-T-003 ‘Automated 
Detection: Triggering Smarter, Faster, Better Response to Incursion’ 



SZ530: Development and performance evaluation of the starling sentinel acoustic detector 

 

 Page 5 of 56 

respectively; Model2: 95.5%, 95.6%, 95.4%, respectively). However, recalculation of Precision 

and Recall from the validated output of the two field tests provided a good estimate of 

performance in natural recording situations. For a user-chosen threshold probability value of 

0.96, Model2 misses around 36.4% of starling calls with an associated probability of a match 

to the model of 0.5 or greater, though the signals that are missed are often of low amplitude or 

are obscured by other signals. It typically produces a list of putative detections where c. 3.3% 

are False Positive detections. This compromise between levels of True Positive rate and False 

Positive rate is considered practical for initial deployment of the model at two sites in Western 

Australia.  

Further training was undertaken to produce Model3, which has had both the input of validated 

and labelled examples from Field Test 2 of Model2, plus the 8,329 False Positive examples 

derived from applying Model2 to recordings made across the South Coast of Western Australia 

in 2011 on Song Meter (Wildlife Acoustics) recorders. The performance of this Model3 has not 

yet been evaluated, but it is available for broad scale deployment, testing, and further 

refinement.  

In summary, Model3 available for broader deployment has been trained on at least 6,969 

starling calls (plus many more as part of the development of Model1), plus 3,493 False Positive 

signals from South Australia and 8,329 False Positive signals from Western Australia. 

In conclusion, the significant contribution of thousands of examples of starling buzz and whistle 

calls, and an iterative process of retraining models with labelled examples of True and False 

Positives recorded on field tests has produced a deep learning CNN model that is suitable for 

deployment as part of a Passive Acoustic Surveillance in southern Western Australia. It can 

be improved further in the future based on accumulated resources and experience resulting 

from a broader deployment beyond the current two test sites in Western Australia. The coding 

resources are also suitable for the development of models and Passive Acoustic Surveillance 

systems for other vocalising species, and a Model0 for the Asian Black-spined Toad was 

produced as a proof of concept.  
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Glossary 
 

There are terms within this report that have specific meanings, as defined in this section. 

 

Accuracy—The fraction of predictions the model got correct (number of correct predictions 

over total number of samples). Calculated by (see Appendix 1 for explanation of the 

illustration): 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

Call—Any signal that was produced by a species of bird, or a signal not from a bird that is 

mistaken for a bird call. Here the word is used in a general sense, and can include only some 

or all of the syllables and elements.  

 

CNN—The one-dimensional Convolutional Neural Network method chosen ultimately for 

application in this project. It is one-dimensional because the input is a sound wave, and during 

analysis the ‘kernel’ (a filter used to extract features) slides along the signal in one dimension 

(along the time axis; or in the frequency domain: Cheuk et al. 2020). A sound wave displayed 

as time series data is actually in two dimensions (time by amplitude), but it is the behaviour of 

the kernel that gives the CNN its dimensionality. Two-dimensional CNNs are common because 

image classification has many applications, and it requires the kernel to slide over a flat image 

(e.g. a digital photograph) in two dimensions (width by height). 

 

Detection model (‘the model’, ‘the CNN model’, ‘the algorithm’)—A trained CNN classification 

system that is optimised for making identifications of starling calls. This term is used generally, 

and the term “Model#” (where # is a number) is used to specify a particular iteration of the CNN 

model that was applied and tested. 

 

Detection probability—A value between 0 and 1, or in percent, representing the probability of 

detection for target call types based on fitting of the CNN model.  

 

Detection threshold probability value (‘threshold’)—A probability value above which calls are 

attributed to the target species, as the basis for a species identification.  

 

False Negative (FN)—A missed detection. Calls from the target species that were not detected 

by the model, given a chosen detection threshold probability value. During this development 

phase of the project, there are two types of false negative. ‘FN1’ is anything with a detection 

probability of 0.5 or more and below an arbitrary threshold value, which are represented in 5-

second WAV snippets that are output for investigator validation. These were used in model 

performance evaluations and were the basis of estimates of Accuracy, Precision and Recall. 

‘FN2’ is anything that was missed by the model and had a detection probability of less than 

0.5. Examples of these calls are only observable in the 5-minute WAV calls recorded, and do 

not contribute to estimates of Accuracy, Precision and Recall. Rather, the rate of missed 

detection in 5-minute WAVs is compiled and reported separately. See also the Confusion 

Matrix in Appendix 1. 
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False Positive (FP)—The incorrect attribution of an identification of ‘starling’ to a call. The 

source of the call is either another bird, or else the ‘call’ is a portion of the background noise 

having characteristics that fit the model with high probability. The rate of False Positive 

detections of target calls is the proportion of non-target signals with a probability score above 

the set detection threshold probability value. False Positives are confirmed by manual 

inspection of the call in a spectrogram by a person experienced with examining starling calls. 

See also the Confusion Matrix in Appendix 1. 

 

Model development—Developing a model or algorithm using reference calls from the target 

species, other signals that an investigator thinks might be, or observes to be, attributed 

incorrectly to the target species, and long background recordings that do not contain calls from 

the target species. The iterative process of model development in a ‘train’ coding routine uses 

three types of dataset: 

 

Training dataset: The sample of data used to fit the model. This is typically most of the 

available reference call recordings. 

 

Validation dataset: The sample of data used to provide an unbiased evaluation of a 

model fit on the training dataset while the machine learning engineer fine-tunes model 

hyperparameters. The model processes this data as part of an evaluation, but it does 

not learn from it. The evaluation becomes more biased as skill on the validation dataset 

is incorporated into the model configuration. The validation dataset is typically a small 

proportion of the reference call recordings (e.g., 15%; also called the development 

dataset). 

 

Test dataset: A separate sample of data used to provide an unbiased evaluation of a 

final model fit on the training dataset. It is only used once a model is completely trained. 

The test dataset contains selected examples that encompasses the variation that is likely 

to be faced by the model in a real deployment. 

 

Precision—The proportion of identified calls that are from starlings (total correct predictions 

over the total number of predictions). The inverse is the False Positive rate. Calculated by (see 

Appendix 1 for explanation of the illustration):  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

Recall—The proportion of starling calls that are identified (total positive predictions over all 

positive samples). Calculated by (see Appendix 1 for explanation of the illustration): 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Single Board Computer (SBC)—a complete computer built on a single circuit board, with 

microprocessor/s, pre-determined amount of RAM, input/output (I/O) and other features 

required of a functional computer, but with no expansion slots for peripherals. One of the most 

widely known SBCs is the Raspberry Pi range that was developed for education, and is now 

popular with hobbyists and ‘makers’. Some, such as the NVIDIA Jetson Nano are built for 

specialised applications that require greater use of GPUs. A wide range of other expansion 

boards (‘hardware attached on top’ or ‘HATs’) with specialised functions are available. For 
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example, in this project, digital audio conversion of sound from a microphone is handled by a 

custom expansion board. The functionality of SBCs can also be split into two separate boards, 

one that handles I/O and HATs, and another containing CPU and RAM that functions as a 

‘compute module’.  

 

True Negative (TN)—The correct rejection of an identification of ‘starling’ to a call. The rate of 

True Negative detections is the proportion of non-target signals with a probability score below 

the set detection threshold probability value. True Negatives are confirmed by manual 

inspection of the call in a spectrogram by a person experienced with examining starling calls. 

In practice, this number is extremely large because there are many signals that are the basis 

for small peaks in probability that are well below the threshold. See also the Confusion Matrix 

in Appendix 1. 

 

True Positive (TP)—The correct attribution of an identification of ‘starling’ to a call. The rate of 

True Positive detections of target signals is the proportion of target signals with a probability 

score above the set detection threshold probability value. True Positives are confirmed by 

manual inspection of the call in a spectrogram by a person experienced with examining starling 

calls. See also the Confusion Matrix in Appendix 1. 

 

Target signal—in this project, one of the two primary call types, or a syllable, from the target 

species that the model was trained on. 

 

Whistle—a target call type; a long descending whistle of c. 500 milliseconds beginning 

anywhere between c. 6 and 9 kHz, and descending to c. 2.5 kHz (example in Figure 1). 

Sometimes a second whistle follows the first with no inter-call period, with each possibly 

emitted by two separate individuals.  

 

Buzz sequence—a target call type, of which there are two main variants; any of the buzz-

like calls that span the frequency range between c. 6 and 10 kHz (example in Figure 1). 

 

Target species—in this project the European starling (common starling) Sturnus vulgaris. 
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1 Introduction 
 

1.1 Background 

 

Surveillance of remote and large expanses of Australia for wildlife species of interest requires 

either enormous sustained and intensive field survey effort, or a technological solution that can 

reduce the effort and increase the effectiveness of species detection. In environmental impact 

studies, targets of interest are typically threatened species listed under State, Territory or 

Commonwealth legislation. The movements of invasive species are also of interest in a 

biosecurity context. The European (or common) starling Sturnus vulgaris is one such 

introduced bird species that is a Declared pest animal under the Western Australian Biosecurity 

and Agriculture Management Act 2007 and associated Regulations, and presents particular 

challenges for control in this state where it has not yet established.  

 

Starlings are reasonably common and widespread across most of eastern Australia (Atlas of 

Living Australia2), and most incursions into Western Australia (WA) are from individuals that 

disperse frequently across the Nullarbor from South Australia (SA). Such incursions represent 

a significant threat to WA’s agricultural, public amenity and biodiversity assets (Campbell et al. 

2015). Starlings cause damage to high-value fruit crops such as cherries and grapes, affect 

intensive cattle, pig and poultry production by consuming and spoiling feed, spread weeds 

through their droppings and regurgitations, are a nuisance to residents through their noise, 

soiling of garden trees and outdoor furniture, vehicles, and footpaths by droppings, cause 

damage and disease risk from nesting in buildings, and compete aggressively with native 

species for nest sites (review in Campbell et al. 2015; DPIRD 2018). If starlings are left to 

establish in WA unchecked, the costs are likely to be in the tens of millions of dollars, so it is 

more economical to effect control (Campbell et al. 2015).  

 

Incursions of individuals and small flocks of starlings have been controlled by the WA 

Government since 1971. The control programme aims to prevent the establishment and 

subsequent increase in starling numbers within WA, mainly by halting the persistent incursions 

from SA. Numerous actions have been conducted as part of the control programme, including 

the widespread installation of wooden nest boxes in swamps that may have helped 

concentrate breeding and thus assisting control effort (Campbell et al. 2012a), and trapping 

using caged live starlings as a lure (Campbell et al. 2012b). The cost and ethical basis of the 

latter has been questioned. Further, while starling numbers continue to be suppressed, 

Campbell et al. (2015) stated that further improvements in the efficiency of starling detection 

and control are required.  

 

  

 
2 https://www.ala.org.au/ 

https://www.ala.org.au/
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1.2 Aims and scope 

 

The present project seeks to build an acoustics-based surveillance (‘sentinel’) system in areas 

west of the Nullarbor Plain where incursions of starlings occur to further improve the efficiency 

with which these birds can be detected across large areas of mostly uninhabited land.  

 

The effort is supported by the Commonwealth Government’s Centre for Invasive Species 

Solutions Project No. P01-T-003 ‘Automated Detection: Triggering Smarter, Faster, Better 

Response to Incursion’. 

 

The scope of the involvement of Specialised Zoological in the project extended to the following 

objectives: 

 

1. Develop a reference call library for starlings that will support the development of a 

machine learning based bioacoustic detection system.  

 

2. Develop, with the collaborative technical assistance of Thomas Rowntree (Senior 

Research Engineer, Australian Institute of Machine learning, University of Adelaide), an 

acoustics-based starling call detection and identification software system that is suitable 

for operation on a Single Board Computer (SBC) forming the core component of an 

integrated Passive Acoustic Surveillance (PAS) hardware solution for starling detection. 

 

3. Refine this system to optimise the rate of true detections and minimise the rate of 

incorrect identifications through field testing of machine learning models loaded onto 

PAS units deployed in South Australia. 

 

4. Using similar coding tools, develop an automated acoustics-based detection and 

identification system for at least one additional invasive species, the Asian Black-spined 

Toad. 

 

To guide the development of the software component of the PAS, a ‘Scenario’ was described 

that outlined the needs of the project and anticipated constraints (Appendix 2). The present 

document builds on the progress reports of Specialised Zoological (2020, 2022).  
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2 Choosing an analysis method for a Passive Acoustic 

Surveillance bioacoustic recorder 
 

There are many tools available for the analysis of bioacoustic signals. Commercial software 

has found widespread use over many years but, more recently, open-source packages in 

computing languages such as Python and [R] have seen much development—both for sound 

analysis and signal processing in general, and for the application of many ‘machine learning’ 

methods. When choosing amongst these tools for the current application, there were 

numerous considerations, but there are two constraints imposed by the hardware that limit the 

range of tools available:  

 

The first is whether these packages will run on the type of processing chips that are on 

the more capable (higher specification) Single Board Computers (SBCs). Most of these 

small computing devices have a ‘system on a chip’ (SoC) with an integrated ARM-

compatible central processing unit (CPU). Some software packages are not compatible 

with this kind of ‘chip architecture’ (AArch32, AArch64), at least without further 

development.  

 

The second is that some classification methods are computationally intensive, which 

might place too great a demand on either the processor (CPU or GPU) or the power 

supply. Thus, the starling detection software needed to be composed of tools that will 

operate both efficiently and effectively on a relatively small computing device that can 

run without mains power.  

 

Since most SBCs can run a version of Debian-based Linux, finding a way to run Windows-

based software popular for analysing bird calls was not possible or desirable, especially 

because such software lacks the flexibility for integration into a larger automated acoustic 

recording, signal processing and classification system. Examples of such software include 

RAVEN PRO (Cornell Laboratory of Ornithology, Cornell University 3) and SOUNDID 4. Given 

that many biologists now use the [R] statistical computing language for a very broad range of 

analyses, there are also popular packages for bioacoustic analysis. In the present context, the 

real value of considering these software programmes is to understand what methods can been 

incorporated into a full recording and analysis system. While the methods might be different, 

they have similar overall components:  

1. pre-processing of sound—filtering, de-noising, background subtraction; 

2. segmentation of signals—defining putative calls or syllables in an audio stream; 

3. feature extraction—deriving a set of measurements or output from filters; and  

4. classification—allocation of signals to a predefined set of groups or clusters.  

 

An early step in the workflow facilitated by RAVEN PRO is the segmentation of signals from 

background with a customised Band Limited Energy Detector (BLED, or a ‘blob’ detector). 

Similar threshold-based extraction of signals from the background soundscape is a necessary 

first step before feature extraction in SOUNDID (Jinnai 2018). Segregation in ANABAT INSIGHT 

 
3 https://ravensoundsoftware.com/ 
4 http://www.soundid.net/SoundID/Software_Home.html 

https://ravensoundsoftware.com/
http://www.soundid.net/SoundID/Software_Home.html
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software for bat call analysis uses a zero-crossings threshold (Titley Scientific 2020). In [R] 

language packages such as WARBLER ‘blobs’ are segmented with a function that uses a 

threshold together with other optional constraints (Araya-Salas and Smith-Vidaurre 2017; 

using auto_detec()). Segmentation can also be conducted using a set of ‘templates’ of a target 

signal, and calculating a correlation score between these templates and each defined time bin 

in a recording. This is implemented in the [R] package MONITOR (Hafner and Katz 2018). The 

correlation scores across the recording can be considered as a series of peaks, and signals 

corresponding to peaks above a threshold score can be allocated to the target signal category.  

 

Feature extraction in RAVEN PRO is a user’s choice of up to 82 measurements derived from an 

area in the time-frequency domain defined by the BLED rectangular window. Compiled 

measurements can be exported for classification elsewhere. A similar system is available in 

the [R] package BIOACOUSTICS (Marchal et al. 2021). In SOUNDID, the signal of interest is 

decomposed with the Linear Predictive Coding (LPC) method to obtain a representation of the 

spectral envelope (rather than the more commonly used fast-Fourier Transform, FFT). The 

shape of this envelope is compared with representations from reference signals with the 

acoustically-appropriate Geometric Distance metric (Jinnai et al. 2009, 2010, 2012) as a way 

of classifying the signal of interest to the categories of target or non-target. ANABAT INSIGHT 

relies on measurements taken from a trend of the echolocation chirp shape in the time-

frequency domain, and uses filters to subset ranges of these measurements within a Decision 

Tree process to allocate species names. In WARBLER, fundamental or dominant frequency 

contours as a time series can be applied to segmented signals, and sets of measurements can 

be taken; or else summary variables derived from sets of Mel Frequency Cepstral Coefficients 

(MFCCs) are saved as input for a range of classification options. Common machine learning 

classification methods used in bioacoustics include Discriminant Function Analysis, Gaussian 

Mixed Models, Hidden Markov Models, K-Nearest Neighbours, Random Forest Walks and 

Support Vector Machines (e.g., Agranat 2009, 2012, 2016; reviews in Priyadarshani et al. 2018 

and Das et al. 2020; Clink and Klinck 2021; Marchal et al. 2021). 

 

The methods above have generally been developed for specific applications and then cross-

applied to other tasks (e.g., MFCC and LPC from speech recognition), which, it has been 

argued, has contributed to stagnation in the field of audio event recognition (Humphrey et al. 

2013). The best performance appears to be gained with newer ‘deep learning’ approaches, 

rather than ‘hand-crafted’ methods. Deep learning is a class of machine learning algorithms 

that are based on artificial neural networks and use multiple layers to progressively extract 

higher-level features from raw input. In deep learning, a simple, general transform is applied 

to the input data, and the network then learns a feature representation and performs 

classification. 

 

A demonstration of the level of improvement that deep learning methods have brought to 

bioacoustics was evident in the BirdCLEF challenge, a code competition posed by the Cornell 

Lab of Ornithology via Kaggle5 to automate the acoustic identification of birds in soundscape 

recordings. When deep learning was applied, mean average precision (MAP) scores rose from 

a maximum of 0.45 using to 0.69 (Kiskin et al. 2020). The application of deep learning for bird 

call recognition and identification has since taken two main pathways: one that classifies based 

on audio streams (e.g., following wavelet transformation or Short-time Fourier Transformation 

 
5 https://www.kaggle.com/c/birdclef-2021/overview 

https://www.kaggle.com/c/birdclef-2021/overview
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(=sliding window Discrete Fourier Transform); Kiskin et al. 2020; Cheuk et al. 2020), and 

another where the audio stream is first converted into a spectrogram image showing a 

representation of signals in the time-frequency domain. Perhaps the best known and largest 

project based on images of spectrograms is the Cornell Lab of Ornithology’s BirdNET6 project 

that uses a model architecture derived from the family of residual networks (ResNets) (Kahl et 

al. 2021). It allows the annotation and identification of bird species from North America and 

Europe, and its performance for audio event detection is equivalent to that for object detection, 

with a MAP score of 0.79 for single-species recordings.  

 

Deep learning has been applied previously, not only to bird call identification in general, but 

specifically for starlings in the context of pest management. Dolezel et al. (2019) describe an 

evolved system that takes sound recordings as input, and uses a Convolutional Neural 

Network (CNN) as a decision-making tool based on spectrographic images of the sound 

recordings. CNN is a class of artificial neural network most commonly applied to analyse 

images. Dolezel et al. (2019) recorded monaural sound at a sampling rate 44.1 kHz, filtered 

for noise and silence, normalised for energy amplitude, and divided the audio stream into 3-

second segments. These were converted to a three-dimensional spectrogram, represented as 

normalised frequency (x) by samples (y) by power over frequency (z). The performance of five 

CNN architectures was evaluated on a recording of 50 minutes in total, where 6 minutes was 

of starling calls, and on spectrograms of different resolution (number of pixels). The best results 

(as measured by Accuracy, Precision and Recall; see Glossary) demonstrated good results 

with the LeNet CNN architecture and 150 x 150 pixel spectrographic image size. 

 

In their field implementation, their goal was to localise the source of starlings within a vineyard 

and then deter them from feeding. Their system consisted of a central processing device 

receiving input from multiple microphone sources spread throughout the vineyard, and an 

acoustics-based deterrent (or ‘scarer’) (Dolezel et al. 2015, 2016). The deployment 

requirements and goals of the work by Dolezel et al. (2015, 2016, 2019) are different to those 

for the present starlings detection system. They were able to take advantage of mains power, 

and needed a device that could process multiple inputs (the NVIDIA Jetson “AI platform for 

autonomous machines”7  combined with the Intel Movidius Visual Processing Unit Neural 

Compute Stick8). They also sought to identify the starling from a wide range of call types, rather 

than just a few of the more common call types. Despite these differences to the present 

application in Western Australia, their experience informed both hardware and software choice 

for the deployment situation of a PAS unit trained to detect starling calls in remote areas of 

Australia. 

  

 
6 https://birdnet.cornell.edu/ 
7 https://www.nvidia.com/en-au/autonomous-machines/embedded-systems/ 
8 https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html 

https://birdnet.cornell.edu/
https://www.nvidia.com/en-au/autonomous-machines/embedded-systems/
https://www.intel.com/content/www/us/en/developer/tools/neural-compute-stick/overview.html
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3 Bird calls 
 

3.1 Calls of starlings 

 

An acoustics-based PAS system for starlings in the Western Australian environment needs to 

be able to detect call types that migrating starlings might emit when in groups or as lone 

individuals. Starlings have an extensive repertoire of calls, and the detection system needs to 

be trained to recognise one or more common call types that could be made by starlings 

dispersing outside their established range.  

 

The vocal repertoire of starlings in their original natural range has been the subject of 

numerous behavioural studies that attribute function (e.g., to song: Eens et al. 1989, 1990, 

1991, 1993). Male starlings emit complex songs that can last over a minute and comprise over 

90 short song types that extend between 0.16 to 2.4 seconds each (Eens et al. 1989). The 

elements within song types can be described as whistles, clicks, rattles, squeaks and 

screeches (citations in Eens et al. 1989).  

 

Various websites that provide bird species information profiles have also described call types 

and the situations in which calls are made. The Cornell Lab of Ornithology9 mentions warbles, 

harsh trills, chatter, metallic chips, scream-like calls, bill clacks, and smooth liquid sounds. A 

purr-like call is given when a bird takes flight, and a rattle is given when an individual joins a 

flock on the ground. Females also sing, and starlings also imitate other bird species (e.g., 

Hindmarsh 1984). The species profile on the website of BirdLife Australia10 mentions that birds 

do not call while in the spectacular murmuration flocks but are incredibly vocal once they all 

alight at a roost.  

 

There is an abundance of example recordings on the global online repositories for bird call 

recordings at Xeno Canto11 (1,389 foreground recordings as of 2022-02-14) and the Macaulay 

Library12 (1,816 recordings). Inspecting these examples when tasked with choosing a few that 

are thought likely to be emitted by dispersing individuals outside their known range as either 

individuals or flocks presents as a formidable challenge. In this project, we needed to predict 

which of these many call types might be made outside their natural range without having the 

benefit of actual recordings from a starling in exactly the situation where it needs to be detected. 

Previous work on an earlier version of a deep learning model trained to recognise starlings 

was based on buzz and whistle call types (Campbell et al. 2013). 

 

  

 
9 https://www.allaboutbirds.org/guide/European_Starling/sounds 
10 https://birdlife.org.au/bird-profile/common-starling 
11 https://xeno-canto.org/ 
12 https://search.macaulaylibrary.org 

https://www.allaboutbirds.org/guide/European_Starling/sounds
https://birdlife.org.au/bird-profile/common-starling
https://xeno-canto.org/
https://search.macaulaylibrary.org/
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3.2 Making reference call recordings 

 

Only a small proportion of the variety of call types that can be made by starlings could be 

expected to be useful in our classification system. Thus, the approach to target call selection 

involved consideration of several practical actions and solutions: 

1. Make as many recordings of starlings as possible in the Adelaide area and surrounds to 

understand what types of calls are heard commonly in areas of South Australia that might 

be part of the source of dispersing individuals in Western Australia. 

2. Record starlings when in flocks, especially when roosting or on the ground.  

3. Compare candidate calls of starlings with calls of relevant Western Australian species 

available on Xeno Canto to identify possible sources of False Positive identifications. 

4. Accept that the detection model built will have a degree of limitation in detecting starlings 

because of the variation that the model is built upon, but allow for future iterative 

improvement over time as awareness of relevant call type variation is discovered, 

including during this development phase.  

5. Rely on a chosen target call as an initial ‘probe’ to efficiently discover the presence of 

other call types made within a few seconds of the target.  

 

Acoustic recorders (Bioacoustic Audio Recorders, BARs; Frontier Labs, Brisbane; 48 kHz 

sampling frequency) were placed at two residential addresses in suburbs of Adelaide city 

(Unley, Mitchell Park), one in Mt Barker, a property in McLaren Flat, two properties in Clayton 

Bay, and one property in Cape Jervis. Recording sessions at each location were at least one 

week, and the Adelaide city and Cape Jervis recording periods totalled several months. From 

these recordings, and general ‘birdwatching’ activity within Adelaide city where recordings 

were made from starlings under direct observation (using a Røde NTG-2 shotgun microphone 

connected to a Zoom H1n digital audio recorder; 48 kHz sampling frequency), it was apparent 

that ‘whistle’ and ‘buzz’ type calls were relatively common (Figure 1). Some call types could 

not be attributed with confidence to starlings, for example some higher frequency descending 

whistles that might have derived instead from the blackbird. Other call types were attributed 

unambiguously to starlings under direct observation, but did not appear to be common outside 

one location (e.g., the ‘wow’ call; Figure 1).  

 

It was especially difficult to obtain quality recordings from animals in flocks. While starlings 

could be observed easily throughout the Fleurieu Peninsula, birds in flocks were timid and 

difficult to approach. The alternative to approaching flocks was to place recorders in areas 

where starlings congregated regularly. This also proved challenging, but a small airstrip for 

model planes in Clayton Bay regularly had starlings feeding on an open area of ground. 

Despite the informed placement of two BAR recorders, the resulting signal quality of the 

recordings made over two unattended recording sessions was low. Thus, calls of birds in flocks 

do not yet contribute to the detection system. 

 

Most quality recordings of starling calls came from suburbs in Adelaide city and a residence in 

Cape Jervis, which were also the sites where testing of the detection model and recording 

hardware was undertaken (development of Model1 and Model2; Field Test 1 of Model1; Field 

Test 2 of Model2). The model was trained on three main call types: the ‘whistle’ and two types 

of ‘buzz’ sequence (Figure 1).   
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Figure 1. Examples of the target call types from starlings that were used to train the CNN 

model (A: buzz sequence type 1 containing high frequency and u-shaped buzz syllables; B: 

buzz sequence type 2; C: multi-harmonic whistle c. 600 milliseconds in duration; D: a ‘wow’ 

call with a duration of c. 1 second, which was not used for training because it was only detected 

in the Unley recording area).  
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3.3 Birds of the Western Australian deployment area 

 

To identify whether the whistle and buzz call types that appeared to be most common in 

Adelaide and the Fleurieu Peninsula had a strong similarity in shape and frequency 

characteristics to species found in the Western Australian deployment areas, a list of bird 

species was derived from two sources: the Atlas of Living Australia13 (a general area bounded 

by latitudes –30.1 and –34.7 S and longitudes 118.9 and 129.0 E; downloaded 2020-05-20; 

Appendix 3). Calls of these species were then examined on the Xeno Canto database. While 

it is difficult to predict what an artificial neural network model will mistakenly attribute an 

identification of starling to, at least the more obvious candidates could be identified. The list in 

Appendix 3 has not been checked for current taxonomic accuracy, and detailed acoustic 

comparisons have not been made to identify potential sources of False Positive.  

 

The intention of making this compilation was to inform generally about the potential for False 

Positives to occur before field testing. Most bird species in Western Australia, that is 10 of the 

173 species listed, appear not to have a perceived likelihood of producing a call type that will 

result in a mistaken attribution. 

 

The actual signal types that appear as False Positives during testing of Model2 in Field Test 2 

and subsequent deployments will only be discovered by application of the model. False 

Positives may also be discovered by the application of Model2 in a modified runtime script to 

background recordings provided by Susan Campbell from previous deployments of Wildlife 

Acoustics Song Meter SM2 recorders in the Western Australian deployment area (Campbell 

et al. 2013). Having a list of candidate species might help to identify the source of these False 

Positives. Previously, calls of the Australian Raven and New Holland Honeyeater were 

common sources of False Positive detections in the previous effort for applying machine 

learning to starling call detection (Campbell et al. 2013). 

 

  

 
13 https://www.ala.org.au/ 

https://www.ala.org.au/
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4 Early considerations and prototypes 
 

The development of the bioacoustic recording and processing system progressed through non-

systematic testing with different analysis approaches and hardware options. Most attention 

was given to the development of the one-dimensional CNN system (see Glossary) written by 

Thomas Rowntree, but other activities facilitated by Specialised Zoological informed some 

minor aspects of this.  

 

1. A full recording pipeline was developed through student projects at the University of 

Adelaide, which supported five Master of Engineering (Electronic) candidates in the 

School of Electrical and Electronic Engineering in 2019 and 2020. They developed 

systems for the recording and classification of bat and bird calls using Python and bash 

scripts, feature extraction with MFCCs, tested filtering and noise removal options and 

used K-Nearest Neighbour to allocate target detections (e.g., Methra 2019; Xia 2020). A 

key challenge for the students was to embed their bioacoustic system into an operating 

system capable of running on an SBC. Two main hardware solutions were successfully 

implemented, in versions of both Raspbian OS 14  and Balena OS 15  on both the 

Raspberry Pi 4 Model B16 and the balenaFin 1.117 containing a Raspberry Pi Compute 

Module 318. The system was ultimately deployed within a Docker19 container that could 

be updated and accessed via the balenaCloud20 system that supports deployment of 

identical software across a fleet of devices.  

 

2. An NVIDIA Jetson Nano Developer Kit (V3)21 and a Raspberry Pi 4 Model B were also 

trialled in the early stage of the project. The Jetson Nano device is a GPU-accelerated 

computing platform running NVIDIA CUDA-X (a collection of 40+ acceleration libraries) 

in a version of the Ubuntu Linux operating system. In this project, it was used as an 

exemplar SBC by Thomas Rowntree to test early versions of the recording and 

processing system that incorporated the CNN model runtime code (powered mains 

supply and using a USB-connected conferencing microphone). The Jetson Nano has a 

maximum reported power consumption of 5 Watts, and while optimised for AI, was 

considered to be excessively powerful and inefficient in power consumption for the 

application. When the Raspberry Pi Compute Module 422  and IO board23  became 

available, testing was transferred to a prototype supplied by the project collaborators 

David Barnard at DKB Solutions Pty Ltd and David Lucas at Lynxemi Pte Ltd.  

  

 
14 https://www.raspberrypi.com/software/operating-systems/ 
15 https://www.balena.io/os/ 
16 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ 
17 https://www.balena.io/fin/ 
18 https://www.raspberrypi.com/products/compute-module-3-plus/ 
19 https://www.docker.com/ 
20 https://www.balena.io/cloud/ 
21 https://developer.nvidia.com/embedded/jetson-nano-developer-kit 
22 https://www.raspberrypi.com/products/compute-module-4/?variant=raspberry-pi-cm4001000 
23 https://www.raspberrypi.com/products/compute-module-4-io-board/ 

https://www.raspberrypi.com/software/operating-systems/
https://www.balena.io/os/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.balena.io/fin/
https://www.raspberrypi.com/products/compute-module-3-plus/
https://www.docker.com/
https://www.balena.io/cloud/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.com/products/compute-module-4/?variant=raspberry-pi-cm4001000
https://www.raspberrypi.com/products/compute-module-4-io-board/
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3. Consideration was also given to microphone zones of detection. With the goal of 

maximising the detection of starlings within the vicinity of a PAS system, a relevant 

consideration became whether to make mono or stereo omni-directional recordings. 

Having two channels increases a zone of detection around a microphone, but doubles 

the amount of processing used. A solution offered to increase the zone of detection but 

restrict recording to a single channel was the Compression Zone Microphone (CZM; 

Riverforks Research Corporation, USA24; described by patent US 6,681,023 B1). This 

device allows radially directional sound to be collected, and it comprises a parabolic-

shaped zone in cross-section within a waveguide formed by two circular disks positioned 

one above the other; and with a microphone positioned in the middle of lower disk to pick 

up sound from the central position. It effectively collects sound from all cardinal directions, 

and its size and shape are optimised for the frequency range of ambient sound, including 

bird calls. Some initial testing was undertaken, and consideration may be given to 

incorporating it into the ongoing DPIRD starlings eradication programme once the core 

device has proven functional.  

 

 

  

 
24 http://www.riverforks.com/ 

http://www.riverforks.com/
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5 Overview of the coding resources produced to create and 

apply the CNN model 
 

Ultimately the deep learning CNN model approach appeared to have the greatest potential for 

bird call classification embedded in an acoustic recording and analysis pipeline on a Raspberry 

Pi computer.  

 

Three main resources were produced for the CNN analysis pipeline: 

 

Training code—a routine to train a new CNN model on a desktop computer using starling 

calls, non-target signals of various types and background soundscape without the calls of 

starlings within it. 

 

Runtime code—Python and shell scripts to create a Docker environment, record an audio 

stream, run the CNN model over the audio stream, and then save 5-second sound file snippets 

containing putative target signals. Five-minute files over complete 24-hour daily recording 

periods were also saved to allow performance evaluation in field tests. 

 

Desktop Runtime code—a subset of the Runtime code that allows running the CNN model 

over existing large recording datasets fed into a desktop computer from an external hard drive.  

 

 

  



SZ530: Development and performance evaluation of the starling sentinel acoustic detector 

 

 Page 21 of 56 

6 Steps in the training and development of the CNN model 
 

6.1 The process of developing the CNN model in 15 steps 

 

The CNN model was trained and then its performance was evaluated in an iterative process 

that began with the development using signals from Adelaide city, through to more intensive 

field testing at a site at Cape Jervis with an early prototype of the chosen Raspberry Pi 

Compute Module 4 hardware, and finally to a full deployment for testing at two sites in Western 

Australia.  

 

The following is a summary of the entire process: 

 

1. Collect reference calls from starlings and background soundscape recordings from 

Adelaide city and the Fleurieu Peninsula (see section 3.2 Making reference call 

recordings). 

2. Write the Training code routine to create a CNN model and make iterative 

improvements of it. 

3. Write the Runtime code routine to implement a multi-step recording and classification 

pipeline suitable for deployment on the chosen SBC.  

4. Embed this Runtime routine in a Docker container as part of a larger on-board 

acoustic recording and analysis system suitable for an SBC. 

5. Create a CNN model using reference calls of starlings, False Positives and 

background recordings (‘Model0’; see Glossary for ‘model development’). The set of 

reference call recordings used (‘Batch1’) comprised 155 whistle type calls and 21 buzz 

type calls (see Glossary; see section 3.2 Making reference call recordings) from starlings, 

and 157 WAV files with anticipated False Positives (from the New Holland Honeyeater, 

Common Blackbird and other signals). Model0 was used to test the runtime code on the 

Jetson Nano device. 

6. Further training of Model0 to produce a version ready for field testing (‘Model1’). A 

second set of reference call recordings (‘Batch2’) comprising 291 buzz-type calls, 217 

whistle-type calls, and 6 hours of background collected mainly at Cape Jervis was used 

to produce Model1. This model was loaded onto a Raspberry Pi Compute Module 4 and 

IO board (hardware ‘Prototype1’; also referred to as the ‘CM4’) provided by David Lucas 

and then run continuously for 53 days in the backyard of a residence at Mitchell Park in 

Adelaide. The device made over 100,000 detections, which were saved to a hard drive 

as 5-second WAV snippets. Most of these detections were False Positives. A significant 

proportion of these were hand-labelled and added back to the training data, and iterated 

further on the design of Model1 to reduce the False Positive rate. This model was loaded 

then back onto the CM4 to collect more detections. Numerous iterations were undertaken 

in this way to further refine Model1. 

7. Undertake a performance evaluation of Model1 using measures of Accuracy, 

Precision and Recall (see Glossary). A test set of recordings was maintained to help 

validate models during training. This balanced test set was compiled from a random 

excerpt from the full set of training data, which included 210 positive samples and 210 
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negative samples (birds, cars, aeroplanes, dogs). Given that the ‘real world’ is likely to 

be extremely unbalanced, with most sound being composed of non-target signals, the 

reported Precision will be lower in the real world due to the increased opportunity for the 

model to encounter False Positives. Thus, ‘real world tests’ were required to give a better 

understanding of the usefulness of the model. 

8. Undertake ‘Field Test 1’ on Model1 at Cape Jervis in a natural environment over 26 

days of recordings in October–November 2021 with the system loaded onto the CM4 

hardware prototype (see section 8.1 Site characteristics of the Cape Jervis study site).  

9. Assess the performance of Model1 on the field test by compiling the results in the 

framework of a Confusion Matrix. The Field Test 1 recordings were examined in Adobe 

Audition version 22.0. For 15 of these daily recordings (2021-10-24 to 2021-11-07), the 

number of 5-second WAV snippets containing at least one example of a buzz or whistle 

was scored as one, and files without starling calls were scored as zero. When the source 

signal responsible for the probability score was obvious, this was noted. The final matrix 

also included a column with the probability score, as derived from the WAV filename. 

The outcomes are reported in section 9 Results of the performance evaluations. 

10. Further train the model to produce ‘Model2’ using a total of 6,414 5-second WAV 

snippets of manually validated starling calls, False Positives, and missed detections 

(probability < 0.5; False Negative type 2, FN2). 

11. Undertake ‘Field Test 2’ at Cape Jervis on Model2, and then test its performance in 

the same way as Model1 by recalculating rates in the framework of a Confusion Matrix. 

The field test was conducted over 21 days in March–April 2022. The outcome of a 

performance evaluation of Model2 is reported in section 9 Results of the performance 

evaluations. 

12. Deploy Model2 at two sites in Western Australia as part of a full deployment test with 

all hardware and communications components [not reported on in detail here]. 

13. Use the Desktop Runtime coding routine and Model2 to process the 2011 recordings 

made with Song Meters in Western Australia and provide a resource of False Positive 

signal types that would be present in the Western Australian soundscape.  

14. Further train the model to produce ‘Model3’ using compiled WAV snippet files from 

Field Test 2 and those generated using the Desktop Runtime code. These signals were 

used to retrain the CNN model specifically to reduce the False Positives requiring manual 

validation. 

15. Deploy Model3 on a broad scale, and further assess the performance of this model to 

produce future iterations as required. Model3 was not assessed for Accuracy, Precision 

and Recall, and has not yet been assessed in a field test. 
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6.2 Summary of the models produced 

 

A summary of the models produced for each iteration includes: 

 

Model0—the first model produced with legacy and newly-collected reference calls from 

Adelaide city. It was produced with 176 calls of starlings and 157 examples of False Positive 

signals. Initial testing and improvement with calls from Adelaide city. 

 

Model1—an improved model based on field recordings from Cape Jervis, Clayton Bay and 

Adelaide city. It was produced initially with 508 calls of starlings and 6 hours of background 

recordings containing only False Positive signals; and then further trained across many 

iterations with thousands more examples of starling calls from a single location in Adelaide city. 

It was evaluated in Field Test 1 at Cape Jervis using the CM4 hardware prototype.  

 

Model2—an improved model that incorporated validated output (labelled True Positives and 

False Positives) from Field Test1. It was produced with 3,811 calls of starlings with 

probabilities >0.50, 991 calls of starlings with probabilities <0.50 (FN2) and 2,603 examples of 

False Positive signals that were the output from Field Test 1 of Model1. It was evaluated in 

Field Test 2 at Cape Jervis using the CM4 hardware prototype. It has also been deployed in 

WA at two tower sites, but a performance evaluation in this environment has not yet been 

undertaken. 

 

Model3—added further training using 1,483 starling calls and 733 False Positives derived from 

Field Test 2 on Model2, as well as 8,329 False Positives derived from running the Desktop 

Runtime code over legacy recordings (those from Song Meters deployed in Western Australia 

in 2011).  

 

Model4+ —future model(s) to be retrained to reject False Positives accumulated in the 

broadscale deployment in WA. 

 

In summary, Model3 available for broader deployment has been trained on at least 6,969 

starling calls (plus many more as part of the development of Model1), plus 3,493 False Positive 

signals from South Australia and 8,329 False Positive signals from Western Australia. 
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7 Steps in the on-board acoustic recording and analysis system 
 

The later models of the deep learning classification system were embedded into a larger 

system that begins with sound recording, and ends at the point where accumulated sound files 

with putative target signals are available on the device for investigator validation. A schematic 

representation of the core bioacoustic recording and analysis system designed for the starling 

PAS system describes six steps (below; also Figure 2). This Runtime routine was placed in a 

private repository on Github and made available for further development by project 

collaborators responsible for hardware the development component.  

 

1. Sound detection—Sound is taken from the microphone and Analogue to Digital 

Converter and is transferred into computer memory, at a sampling rate of 48 kHz. 

2. Feature extraction and CNN Model classification—A 5-minute segment of this audio 

stream is processed in real time using MFCC for feature extraction, and a vector of 

probability scores reflecting the degree of match of the model to signals across this audio 

stream is produced.  

3. Segmentation—Signals that match the CNN model with a probability score above the 

chosen threshold are identified as starlings. The threshold score is set by the user. For 

performance testing, all signals with a probability score of 0.50 and above were saved. 

For field tests currently being undertaken at two sites in Western Australia a probability 

score of 0.96 was used to achieve the best compromise between the rate of False 

Positive signal rejection and incorrect rejection of the target signal. 

4. Saving for validation—Segmented signals are saved at the midpoint within a buffered 

length of audio stream to a total of five seconds. These ‘5-second snippets’ are saved 

as 16 bit 48 kHz WAV files, with filenames having the following components separated 

by underscores: 

• DateYYYYMMDD_ 

• DayoftheWeek_ 

• StartTimeHHMMSS_ 

• CountOfDetectionsPer5MinFile_ 

• ‘time’_TimeWithin5MinFileSeconds_ 

• ‘prob’_ProbabilityScore.wav 

5. Saving for further development—Each 5-minute segment of audio stream analysed in 

real time is saved as a date-time-stamped 16 bit 48 kHz WAV file, for ‘archival purposes’. 

This allowed performance assessment of signals of the various CNN model versions, 

and will ultimately be excluded in the most mature pipeline to be deployed widely. In the 

first hardware prototype, all 288 5-minute periods within each 24-hour period were saved, 

so no sunrise or sunset-based start and stop to the recordings was implemented. 

6. Logging—A log file is produced of all recordings, and WAV recordings accumulate in 

the following example directory structure: 

/detections/20211007_Thu/recordings 

/detections/20211007_Thu/snippets 

These are stored ready for compression and transmission to the Detect-it system web 

app developed by DKB Solutions that allows browsing of snippets and other functionality.  
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5 mins of audio streamed straight into memory (not saved yet to WAV) 

 

 

 
Input to the CNN Model 

 

 
Response plot over the calls in the Mel-spectrogram, scale 0 to 1 

 

 
5-seconds around peaks above 0.5 saved as WAV snippets 

 
5 minutes of audio in memory saved as 5-minute WAV file 

Then repeat with no breaks 

 

 

Figure 2. Illustration of what happens on the prototype recording device.  

  

Threshold at 0.5 

Create Mel-spectrogram 

Background sounds with bird calls detected by microphone 
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8 The Cape Jervis study site 
 

8.1 Site characteristics of the Cape Jervis study site 

 

Extensive recordings to collect reference calls were made across a total of nine months with 

two BAR units between November 2019 and June 2021; and across two field tests with the 

prototype Raspberry Pi CM4 recorder in October–November 2021 and March–April 2022.  

 

The equipment was placed in the garden of a property on Sorata Street, Cape Jervis, at the 

tip of the Fleurieu Peninsula, South Australia (Figure 3). This property is within 100 metres of 

the ocean shoreline and is fronted by revegetated heathland. The rear of the property, where 

the device was located, contains a small garden of native plants and has numerous 

characteristics that made it a good choice for the field tests: 

 

• Within a rural near-coastal vegetation community and containing a bird assemblage that 

are likely to be relatively similar while still being relatively accessible from Adelaide city; 

• Regularly visited by starlings, appear as residents; 

• Contains nest boxes that starlings were using during the test; 

• Has overhead powerlines upon which starlings sit, either singly or in groups; 

• Larger trees in adjacent properties where starlings often congregate are within auditory 

detection range of an observer; 

• Relatively shielded from the wind; 

• Presence of a small water fountain used as a water source by starlings; 

• Relatively unvisited by people that would cause starlings to vacate or avoid the garden; 
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Figure 3. Top: A frequent sight of a flock of starlings that sits on powerlines above the native 

garden at the Cape Jervis residence; Bottom: A view of the CM4 recorder overlooking the 

garden, with a funnel enclosing the microphone (a Little Raven perches nearby). 
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8.2 Deployment and performance of the Raspberry Pi CM4 hardware prototype 

on field tests at Cape Jervis 

 

For both field tests, the Raspberry Pi CM4 prototype was set in an open area of the garden of 

a residence at Cape Jervis. A 240 Volt power supply was provided from a connection in an 

adjacent shed (extension power cord was routed in a protective enclosure). The device and all 

electrical power connectors were placed together in a plastic lunchbox, which was then placed 

into a waterproof bag. The microphone on the supplied extension cable was attached to a pole 

c. 1 metre from the ground. It was enclosed in the funnel-like top of a soft drink container to 

protect it from rain, and directed horizontally at an area where starling calls were expected to 

be relatively frequent. While this funnel would have narrowed the zone of sound reception, it 

has no significant influence on the outcome of the type of analyses performed herein. The 

device was observed to be functioning normally at the end of both field tests. 

 

The field tests encompassed the following periods:  

 

• Field Test 1: a total of 26 days in the period 2021-10-07 – 2021-11-14. 

 

• Field Test 2: a total of 21 days in the period 2022-03-14 – 2022-04-03. 

 

The quality of signals on the last day of recording was equivalent to that on the first day, as 

assessed by casual inspection of WAV files in a spectrogram in Adobe Audition version 22.0 

software, suggesting no damage had occurred to the microphone from weather conditions.  

 

Large portions of some days had ‘choppy’ signal with innumerable short periods of signal loss, 

which was eventually traced to either poor wire connections in the microphone or a buffering 

issue (Figure 4). Remarkably however, the model still matched with a relatively high probability 

to many signals with periods of silence breaking into starling calls. 

 

 

 
Figure 4. An example of a moderately ‘choppy’ recording segment in a 5-second WAV snippet, 

with 0.99 probability of a match to starling call.  
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8.3 Bird assemblage at Cape Jervis 

 

Being able to identify all bird species in the field test study site was important for understanding 

the contributing sources to false positive signals. Given the broad similarity of the habitat 

(‘near-coastal rural southern Australia’) at the study site, there will be some degree of overlap 

in this bird assemblage with that of the planned deployment areas in Western Australia.  

 

A total of 26 terrestrial bird species (i.e., excluding waterbirds) were noted on the recordings 

or by casual observation during visits to the field test site at Cape Jervis (Table 1). This is 

undoubtedly an incomplete list given that many other species with a range that includes the 

Fleurieu Peninsula are likely to visit on occasion. A total of 14 of these species are found in 

the Western Australian deployment areas and surrounds (Appendix 3), so they have 

effectively been a relevant part of the performance testing of the detection model. 

 

Table 1. List of bird species detected in recordings or by casual observation during visits at 

the field test site at Cape Jervis (asterisk denotes an introduced species; WA: Y indicates 

present in the deployment area in Western Australia). 

 

Common name Genus species WA 

Nankeen Kestrel Falco cenchroides Y 

Common Bronzewing Phaps chalcoptera Y 

Galah Eolophus roseicapilla Y 

Rainbow Lorikeet Trichoglossus haematodus Y 

Musk Lorikeet Glossopsitta concinna  

Purple-crowned Lorikeet Parvipsitta porphyrocephala Y 

Adelaide Rosella Platycercus elegans subadelaidae  

Crimson Rosella Platycercus elegans elegans  

Superb Fairy-Wren Malurus cyaneus  

White-browed Scrubwren Sericornis frontalis  

Little Wattlebird Anthochaera chrysoptera  

Red Wattlebird Anthochaera carunculata Y 

Noisy Miner Manorina melanocephala  

Singing Honeyeater Gavicalis virescens Y 

Yellow-plumed Honeyeater Ptilotula ornata Y 

New Holland Honeyeater Phylidonyris novaehollandiae Y 

Grey Fantail Rhipidura fuliginosa Y 

Grey Shrike-Thrush Colluricincla harmonica Y 

Magpie-Lark Grallina cyanoleuca Y 

Australian Magpie Gymnorhina tibicen Y 

Australian Raven/Little Raven Corvus coronoides/C. mellori Y 

Eurasian Skylark Alauda arvensis  

Red-browed Finch Neochmia temporalis  

*House Sparrow Passer domesticus  

*Common Blackbird Turdus merula  

*European Starling Sturnus vulgaris  
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9 Results of the performance evaluations 
 

9.1 Accuracy, Precision and Recall 

 

The initial performance evaluation was made with the test sets of signals. For Model1, a 

random and balanced selection of 210 starling calls and 210 False Positive signals comprising 

sounds from other bird species, cars, aeroplanes and dogs was used. For Model2, a total of 

1,720 non-training WAV files was used, with equal proportions of positive and negative signals. 

 

The values of Accuracy, Precision and Recall were all relatively high at the conclusion of 

training (Table 2; see Glossary and Appendix 1 for an explanation of these metrics). Accuracy 

shows the percentage of correct predictions (both correctly identified starling calls and correctly 

rejected False Positives) out of all predictions made. Precision is the percentage of correctly 

identified starling calls out of all signals attributed to starlings. Recall is the percentage of all 

starling calls detected in the set of recordings. The decrease in these values from Model1 to 

Model2 reflects the greater amount of variation in signal types that have been included in the 

training process. 

 

Table 2. Percentages of Accuracy, Precision and Recall for Model1 and Model2.  
 

Model Accuracy Precision Recall 

Model1 97 97 98 

Model2 95.5 95.7 95.4 

 

Plots of Precision and Recall against threshold probability scores between 0.5 to 1.0 show a 

significant change in slope at 97–98% (Figure 5; as derived from values taken from 

TensorBoard25, for Model1 only), indicating that the ‘best’ Precision and Recall is obtained for 

probabilities above 97%.  

 

The Precision versus Recall curve shows the trade-off between precision and recall for 

different threshold values above 50% (0.5 probability). In an ideal model, values of Precision 

would stay high (close to 100) for increasing values of recall (thus maximising the area under 

the curve). The curve represents the trade-off between False Positives and False Negatives. 

A perfect classifier would maintain the maximum Precision for all thresholds—i.e. it will not 

make any mistakes. A very poor classification model will give maximum recovery of all targets 

but also give a high output of False Positives. In the outcome from Model1, the relationship 

between the two is equivalent indicating that as the threshold is increased, the trade-off is 

equivalent between finding starling calls and rejecting non-target signals. Thus, the model 

needs to both improve its recognition of target signals when they are present, and improve 

rejection of non-target signals. 

 

Further plotting to include Model2, and based on the data compiled from field tests, shows a 
marked improvement when Model1 is retrained with additional examples (Figure 6). For 
Model2, values of Precision and Recall are higher at all probabilities, and the Precision-Recall 
plot has an overall shape that is closer to that expected for a high performing model. Both 
Precision and Recall are higher, indicating that the model is finding more starling calls, and 
rejecting more False Positives.  

 
25 https://www.tensorflow.org/tensorboard  

https://www.tensorflow.org/tensorboard
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Figure 5. Plots of Precision and Recall for Model1, for probability values above 0.5 (50%), as 
derived from values taken from TensorBoard used to monitor model development during 
training. 
 
 
 

 
 
Figure 6. Plots of Precision and Recall for Model1 and Model2 derived from data calculated 
from the two field tests, for probability values above 0.5 (50%). Vertical lines are at probabilities 
of 0.90, 0.95 and 0.99.  
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9.2 Outcomes of field tests 

 

Calculating and optimising values of Accuracy, Precision and Recall are a standard way of 

assessing how well deep learning models perform. However, simpler metrics can also be 

easier to understand for non-specialists that would like to know, in the present case, how many 

starling calls are being missed, and whether the number of incorrect identifications can be 

minimised to a level that is manageable for regular, manual validation. Therefore, presenting 

components of the Confusion Matrix (Appendix 1; see also the Glossary), which are used to 

calculate Accuracy, Precision and Recall, can make the outcomes of performance testing more 

generally comprehensible. The outcomes of the two field tests are therefore summarised in 

terms of these Confusion Matrix components. 

 

Key to understanding the performance evaluation metrics of the models tested at Cape Jervis 

are the following: 

1. All signals with a probability of 0.5 and above participated in deriving the various 

performance metrics, with some of these signals being produced by starlings and the 

remainder coming from other sources.  

2. The threshold (see Glossary) is not set at one value, but instead the change in 

performance is summarised at different values of this threshold.  

3. Signals with a probability score to a match of the model below 0.5 are effectively 

discarded and not used in all except one analysis to derive a rate of ‘FN2’ (see Glossary); 

and some of these discarded signals are starling calls. 

 

The recordings made as part of field tests were scored as ‘1’ for WAVs containing starling calls, 

and WAVs without starling calls were scored as ‘0’. When the source of a non-target signal 

responsible for the probability score was obvious, this was noted. The final matrix also included 

a column with the probability score, as derived from the WAV filename. 

 

An [R] script was written to derive the numbers of True Positive, False Negative and False 

Positive from this matrix comprising outcomes from 6,414 5-second snippet files for Model1, 

and 2,216 snippets for Model2.  

 

A plot of the distribution of probability scores showed that there was a conspicuous difference 

in the frequency of probability scores between buzz calls and whistles for Model1 (Figure 7). 

Most probability scores for the buzz type calls have a probability score of 0.99. For whistles, 

there is an almost even distribution of probability scores between 0.50 and 0.90, and only a 

relatively small increase after 0.90. This difference in performance for the two call types was 

highly statistically significant (Welch Two Sample t-test: t = 20.27, df = 2562.5, p-value = 2.2e-

16; Table 3).  

 

When Model2 tested in Field Test 2, there was a significantly greater number of whistle calls 

at higher probability values than for buzzes (Welch Two Sample t-test: t = -3.16, df =1481, p-

value = 0.0016; Table 3; Figure 7), indicating that training had resulted in a large improvement 

in the detection of whistles. 
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Table 3. Summary of statistics for the probability scores of two target call types (Mean ± 

Standard Error, Range, Standard Deviation, Median). 

 
 buzz whistle 

Model1 91.69 ± 0.25 82.26 ± 0.39 
 50 – 99 50 – 99 
 12.46 14.71 
 99 86 

Model2 91.25 ± 0.43 93.12 ± 0.41 

 50 – 99 50 – 99 

 12.06 10.81 

 97 99 

 
 

 
Figure 7. Frequency distribution of probability scores associated with starling buzz and whistle 

calls, showing a marked improvement in the detection of starlings from whistles with the 

development of Model2.   
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Model improvement is also clearly evident when cumulative rates of True Positive and False 

Positive are plotted against probability scores for both models (Figure 8). For the True Positive 

plot, this a ‘perfect’ rate of detection whereby all examples are recovered at the 0.50 probability 

threshold. As the threshold is raised, the number of detections gradually decreases. Ideally, 

the rate of True Positive should approach 100% for all probability values, indicating that a 

maximum number of starling calls will be detected at the highest probability values. For the 

False Positive plot, this shows how the proportion of False Positive examples in the dataset is 

reduced with increasing probability threshold value—i.e., non-starling signals are more likely 

to have lower probability values assigned to them by the model. Thus, higher probability values 

have less chance of returning an incorrect identification.  

 

For Model1, there was more strongly declining percentage of True Positives with increasing 

probability for whistles, illustrating that the detection of whistles was relatively poor compared 

to the detection of buzz calls. For both call types combined, the rate of False Positive 

detections was relatively high, with an inflection point around 0.95 indicative of a potentially 

useful threshold point. 

 

There is a clear improvement in three aspects of performance for Model2. First, more whistle 

calls are being detected with a higher probability threshold. Second, there is an overall 

improvement for both starling call types in terms of the proportion of calls being detected with 

a higher probability threshold. Third, the number of False Positive identifications has reduced 

significantly overall, and to the point where even relatively low probability threshold values will 

return minimal numbers of incorrect identifications (e.g., 6.6% of identifications will be incorrect 

for a probability threshold of 0.90 for Model2, versus 32.4% for Model1; Table 4).  

 

A summary of True Positive, False Negative (the inverse of TP), and False Positive values for 

probability threshold values of 0.90 and above is presented in Table 4. From inspection of 

these values, the improvement in the detection of whistles, and the rejection of False Positives 

are the most conspicuous changes with the development of Model2. A threshold of 0.96 has 

been chosen for the field test in Western Australia. While this will miss an estimated 36.4% of 

starling calls (buzzes and whistles combined), it is likely to give a False Positive rate of only 

3.3%. This is important since a higher False Positive rate will result in too many snippets 

requiring validation when the system is deployed more broadly with many more units. 

 

Key to understanding the significance of the False Negative rate of 36.4% is a consideration 

of the quality of calls and the effective detection range of the recording device. During 

inspections of the snippets as part of the performance evaluation, it was noted that many of 

the lower probability detections of the buzz call were from lower quality recordings. In some of 

these, the calls were overlain by other signals in the same frequency band, or else they were 

of relatively low amplitude, and in others the recording was chopped by brief periods of silence 

that interrupted the call. It is relatively straightforward for a human investigator to distinguish 

starling calls that are very faint, or that overlap with other signals. The real challenge for 

identifying starlings will therefore most likely come from signals that are of low amplitude 

relative to background levels (signals that are emitted off-axis, or towards the limit of the 

detection range of the microphone), or interrupted in some way. However, given that Model2 

recognises a broad range of variation for each of the call types that it was trained on, the 

expectation is that if birds move closer to the microphone and keep calling, then detection is 

likely to result if just one good quality example can be recorded.  
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Figure 8. Rates of True Positive and False Positive detections of starling calls for the two 

models, across probability values from 0.5 to 1.0.  
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Table 4. Summary of True Positive, False Negative and False Positive rates (as percentages) 

at threshold scores 0.90 – 0.99 for Model1 and Model2. Orange highlight indicates the rates 

for a threshold of 0.96, which has been chosen for the field tests of two units in Western 

Australia. 

 
  Model1   Model2  

Threshold value Buzz Whistle Both Buzz Whistle Both 

TP—True Positives  
(rate of correct identifications) 

      

0.90 and above 75.4 42.5 63.2 75.2 79.4 77.2 

0.91 and above 74.2 40.5 61.8 72.5 77.7 75.0 

0.92 and above 73.3 37.8 60.2 69.9 76.4 73.0 

0.93 and above 71.9 34.8 58.2 67.6 75.1 71.1 

0.94 and above 69.8 32.9 56.2 65.5 73.6 69.3 

0.95 and above 67.7 28.7 53.5 63.7 71.1 67.2 

0.96 and above 65.4 25.9 51.0 59.4 68.3 63.6 

0.97 and above 62.0 21.4 47.2 54.3 64.4 59.1 

0.98 and above 58.5 16.6 43.1 47.8 60.4 53.7 

0.99 and above 51.7 11.1 36.8 38.2 53.6 45.4 

FN—False Negatives  
(rate of incorrect rejections) 

      

0.90 and above 24.6 57.5 36.8 24.8 20.6 22.8 

0.91 and above 25.8 59.5 38.2 27.5 22.3 25.0 

0.92 and above 26.7 62.2 39.8 30.1 23.6 27.0 

0.93 and above 28.1 65.2 41.8 32.4 24.9 28.9 

0.94 and above 30.2 67.1 43.8 34.5 26.4 30.7 

0.95 and above 32.3 71.3 46.5 36.3 28.9 32.8 

0.96 and above 34.6 74.1 49.0 40.6 31.7 36.4 

0.97 and above 38.0 78.6 52.8 45.7 35.6 40.9 

0.98 and above 41.5 83.4 56.9 52.2 39.6 46.3 

0.99 and above 48.3 88.9 63.2 61.8 46.4 54.6 

FP—False Positives  
(rate of incorrect identifications) 

      

0.90 and above — — 32.4 — — 6.6 

0.91 and above — — 31.2 — — 5.9 

0.92 and above — — 29.7 — — 5.8 

0.93 and above — — 28.4 — — 5.1 

0.94 and above — — 26.9 — — 4.4 

0.95 and above — — 25.0 — — 3.6 

0.96 and above — — 22.2 — — 3.3 

0.97 and above — — 19.6 — — 2.7 

0.98 and above — — 15.8 — — 1.4 

0.99 and above — — 10.7 — — 0.6 
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9.3 Sources of False Positive detections 

 

The possible source of False Positive detections in 6,414 5-second WAV snippets resulting 

from the deployment of Model1 in Field Test 1 was scored for all files that did not contain 

starling calls. It was not usually possible to decide which of the many signals had provided a 

fit to the model, but in some cases the source was obvious because it was the dominant or 

only signal present in the centre of the snippet.  

 

The two most frequent sources of False Positives were from the Grey Fantail and the Common 

Skylark (Table 5). These species could occur in the deployment area in Western Australia, so 

it was considered important to train Model2 to reject these calls. Upon inspection of their call 

types in a spectrogram, they were observed to have a very different structure and should be 

separable from the calls of starlings in the validation process. However, as the goal of 

development was to reduce the number of False Positives contributing to the task of validation, 

it was ensured that there were numerous examples of these species amongst the 4,270 False 

Positive snippets used for training Model2.  

 

The contribution of House Sparrows to the overall rate of False Positive was probably 

underestimated, but this species is absent from the Western Australian deployment areas and 

does not represent a significant issue for the model. It was also well-represented in the set of 

False Positive snippets. 

 

 

Table 5. Source of various False Positive detections. 

 

Source 
No. 5-second 

snippets 
Percent 

Australian Raven/Little Raven 19 0.4 

Common Blackbird 2 0.0 

Grey Fantail 255 6.0 

House Sparrow 57 1.3 

New Holland Honeyeater 11 0.3 

Common Skylark 298 7.0 

unknown 3,628 85.0 

Total 5-second snippets with FPs 4,270  
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9.4 Estimating the prevalence of FN2: False Negatives with probabilities below 0.5 
 

Further consideration was given to starling calls contained in the 5-minute WAV files that had 

not been detected—i.e., they had not met the 0.50 probability threshold for detection. These 

calls may have been missed because they were of relatively low amplitude, they overlapped 

with other signals in the soundscape, or else they represented variation that the model had not 

been trained to recognise. In this report, this proportion of False Negatives has been 

designated ‘FN2’ (represented by the blue square areas in Appendix 1). Model2 was explicitly 

trained to further recognise a broader range of variation in starling calls, and these were 

extracted from the 5-minute recordings made as part of Field Test 1 on Model1. The rate of 

FN2 was estimated for each model from both Field Test 1 and Field Test 2.  
 

For Model1, three periods on days 2021-11-01 and 2021-11-03 were used to estimate the rate 

of FN2. While only a total of 675 minutes was examined, a trend was certainly evident from 

this amount of recording data. The 5-second WAV data contents were first snipped out of the 

5-minute WAVs so that signals with a probability score of 0.5 or greater would not be included 

in the total. This was undertaken using a custom [R] script, and resulted in 5-minute WAV files 

with one or more 5-second periods of silence. Each WAV file was opened in Adobe Audition 

22.0 and the number of syllables from starling buzz and whistle type calls was counted. It was 

not possible to estimate how many 5-second snippets might have resulted from a sequence of 

several buzz syllables, so direct comparisons between the number of 5-second snippets with 

one or more starling syllables and the number of syllables counted from 5-minute WAVs are 

not possible. The process was repeated with 1,345 minutes on days 2022-03-20 - 2022-03-21 

using the 5-minute WAVs from Field Test 2. 
 

The FN2 rate at which buzzes and whistle syllables were missed was relatively high for Model1 

(buzz: 45.7%; whistle: 65.1%; Table 6). After retraining to produce Model2, this rate decreased 

slightly, but especially for whistles (buzz: 40.5%; whistle: 43.3%; Table 6). In conclusion, it 

appears that Model2 is somewhat more successful at recognising a relatively greater amount 

of starling call variation, especially for whistles. Thus, Model2 returned a higher rate of overall 

detection because more starling calls are being recognised at higher probability values.  

 

Table 6. Number of missed starling call syllables from 675 minutes of recordings in November 

2021 from Field Test 1, and 1,345 minutes in March 2022 from Field Test 2 at Cape Jervis—

compared with the number of all call types that were detected in the 5-second snippets. 
 

Date Period 
No. buzz 

missed 

No. buzz 

detected 

No. whistle 

missed 

No. whistle 

detected 

Field Test 1      

2021-11-01 05:54 – 09:59 (245 mins) 329 469 102 54 

2021-11-01 13:44 – 20:24 (400 mins) 273 238 101 46 

2021-11-03 06:09 – 06:39 (30 mins) 133 166 53 37 

Totals  735 873 256 137 

 Precent missed Model1 45.7%  65.1%  

Field Test 2      

2022-03-20 11:24 – 20:04 (520 mins) 106 253 140 165 

2022-03-21 06:19 – 20:04 (825 mins) 191 184 104 154 

Totals  297 437 244 319 

 Precent missed Model2 40.5%  43.3%  
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10 Creating Model3 using recordings from Western 

Australia 
 

Almost all of the signals used to train Model0, Model1 and Model2 have been recorded in 

South Australia, either from Adelaide city, north of the city, or various locations on the Fleurieu 

Peninsula. Thus, the most derived Model2 that has been deployed at the two test sites in 

Western Australia is naive to the Western Australian soundscape. To ensure that this does not 

lead to an excessive number of False Positives that require validation in Detect-It, Model2 was 

retrained to Model3 using not only the validated signals from the performance evaluation of 

Field Test 2, but also signals from Western Australia. 

 

Exposure of the model to the Western Australian soundscape was achieved using a modified 

version of the Runtime code that applies the model to the audio stream. A Desktop Runtime 

code routine was derived that could apply the model to a resource of previously recorded WAV 

files residing on an external hard drive. Using the Desktop Runtime code, Model2 was applied 

to field recordings collected from the starling management program area on the South Coast 

of Western Australia in 2011 on Song Meter (Wildlife Acoustics) recorders (Campbell et al. 

2013). This produced 8,329 5-second snippets containing non-target signals, which were used 

as labelled negative data to train Model3. Further analysis from field testing is required to 

quantify the improvement in Precision and Recall for Model3.  
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11 Using the Training code to create a Model0 for the Asian 

Black-spined Toad 
 

A key stated goal of project P01-T-003 ‘Automated Detection: Triggering Smarter, Faster, 

Better Response to Incursion’ was to use the same code resources to develop an automated 

acoustics-based detection and identification system for at least one additional invasive species, 

the Asian Black-spined Toad (ABST). 
 

Recordings were provided by a global network of collaborators. These include recordings 

made in India, Indonesia, Singapore and Madagascar. Some of the calls are of relatively low 

amplitude, and others dominate the ‘foreground’ of recordings. The call of the consists of long 

call train bursts of variable duration (c. 12 or more seconds long) that consist of repeated multi-

pulse calls spanning the frequency range 0.5 – 4 kHz (Figure 9). 
 

The first version (Model0) of a similar bioacoustics-based detection system for the Asian Black-

spined Toad was trained with the Training code resource of this project using 561 calls of the 

target species, and 523 signals from non-target sources. It is ready for a small-scale field test 

in a habitat where it will be challenged with the calls of other frogs and signal sources, as well 

as overlapping calls of the target species. 
 

 

 
Figure 9. Top: Waveform and spectrogram of an example Asian Black-spined Toad 14.4 

second call train of pulses. Bottom: Further detail of seven multi-pulse calls within the long 

call train.   
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12 Conclusions 
 

1. A reference call library for starlings was compiled, containing both target and non-target 

signals (6,969 examples of starling calls and 11,822 examples of False Positive signals; 

in total across all model iterations).  

 

2. The contribution of thousands of examples of starling buzz and whistle calls, and an 

iterative process of retraining models with labelled examples of True and False Positives 

recorded on two field tests has produced a deep learning CNN model that forms the core 

component of bioacoustics recording and analysis system for starling detection. 

 

3. The Runtime code containing the CNN model (Model2) and associated bioacoustic 

recording and signal processing steps has been integrated into a fully-featured Passive 

Acoustic Surveillance (PAS) hardware solution that is now being tested at two sites in 

Western Australia.  

 
4. The model has also been trained with 8,329 signals from the Western Australian 

soundscape that have the potential to elevate rates of False Positive detections to levels 

where validation would no longer be expedient. This newly trained Model3 is ready for 

field testing. 

 
5. The coding resources are also suitable for the development of models and Passive 

Acoustic Surveillance systems for other vocalising species, and a Model0 for the invasive 

Asian Black-spined Toad was produced as a proof of concept.  
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Appendix 1. Explanation of performance metrics and Confusion Matrix components. 

 

As part of the performance evaluation of how well a trained artificial neural network model 

performs, there are several measures that are used to report its accuracy. These include 

Accuracy, Precision, and Recall (see Glossary), and are calculated based on the components 

of a general Confusion matrix (Table S1-1).  

 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

The proportion of ID’ed calls that are from starlings. 

The inverse is the False Positive rate. 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The proportion of starling calls that are ID’ed. 

 

 

Table S1-1. Confusion matrix showing a summary of the four possible identification outcomes 

from running the model on acoustic recordings, and then validating the outcome. 5-second 

snippet files are saved if the signal is accepted by the model at any threshold probability score 

of 0.5 or greater.  

 

  Predicted condition (testing and validation outcome) 

  Predicted Positive (PP) 

Accepted as starling 

Predicted Negative (PN) 

Rejected as starling 

A
c

tu
a

l 
c

o
n

d
it

io
n

 

Positive (P) 

Starling call 
TP—True Positive 

Correct identification 

 

SNIPPET SAVED 

Validated from 5-sec snippets 

FN—False Negative 

Incorrect rejection, a ‘miss’ 

Type II error 

SNIPPET SAVED 

FN1: Validated from 5-sec snippet 

FN2: Validated from 5-min files 

Negative (N) 

Other signal 

FP—False Positive 

Incorrect identification 

Type I error 

‘false alarm’ 

SNIPPET SAVED 

Validated from 5-sec snippets 

TN—True Negative 

Correct rejection 

SNIPPET SAVED 

Not easily validated from field 

recordings 

 

 

  



SZ530: Development and performance evaluation of the starling sentinel acoustic detector 

 

 Page 48 of 56 

If we can imagine a box full of starling calls on one side (closed circles on a dark grey 

background) and signals attributable to other sources on the other side (open circles on a light 

grey background) (Figure S1-1). All of these starling and non-starling signals have a probability 

of fit to the model of 0.5 and above, and are represented in 5-second snippets.  
 

The model acts as a circular ‘cookie cutter’, cutting out signals that it thinks are from starlings 

from this matrix of target and non-target signals. The size of the circle relative to the square 

represents a set threshold. Some of these are correct identifications of starling calls (True 

Positive on a green background), and some of them are incorrect identifications of signals 

attributable to other sources (False Positive on a red background).  
 

By retraining the model with more validated data, the circular portion should shift to the left, 

and expand to correctly label more starling calls (Figure S1-2). 

 

                           
 

Figure S1-1. Schematic diagram of the acoustic detection process showing regions containing 

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) 

detections (see further details in Table S1-1).  

 

 
 

Figure S1-2. Two aspirational conditions. On the left, there is perfect Precision at a particular 

threshold probability, with only starling calls detected, but some starling calls are missed 

because the threshold is set too high. On the right, there is perfect Recall where the model 

detects every starling call within range of the microphone without mistakenly identifying signals 

from other sources.  

FN 

FP TP 

TN 

X% FN 

0% FP 100% TP 

TN 0% FN 

0% FP 100% TP 

TN 
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What is not shown are all bird calls that have probability scores of below 0.5 (as represented 

in blue; Figure S1-3). In reality, the peaks below 50% contain many more signals. The majority 

of these will be True Negatives, but there is likely to be some starling calls as well (FN2; see 

Glossary). Perhaps the source of these starling calls is further away so that call quality is lower, 

or else the shape of the call is too different and beyond the experience of the model.   

 

Improving the model by further training will reduce the number of False Positives (Figure S1-

4 left). But also, by including a larger amount of natural variation in the calls, the model will 

find more starling calls in both the blue and grey areas by allocating them a higher probability 

score (Figure S1-4 right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1-3. The true extent of missed detections as represented in the blue areas, all of 

which have a probability score of less than 0.5. The grey square encompasses all signals with 

a probability score of 0.5 and above, and the circle the threshold value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1-4. Two aspirational conditions. On the left, there is perfect Precision at a particular 

threshold probability, with only starling calls detected, but some starling calls are missed 

because the threshold is set too high, and there are still starling calls with probability scores 

below 0.5 being missed. On the right, there is perfect Recall where the model detects every 

starling call within range of the microphone without mistakenly identifying signals from other 

sources.  

FN1 

FP TP 

TN 

FN2 more TN 

X% FN 

0% FP 100% TP 

TN 0% FN 

0% FP 100% TP 

TN 
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Appendix 2. The Scenario for guidance in the development of the software and hardware 

components (provided by Dr Susan Campbell; see also Specialised Zoological 2020).  

 

The design of a custom detection system needs to be informed in the first instance by the 

description of a typical scenario. In the scenario are details of the deployment of equipment, 

the availability of networks for communication, and the requires of the investigator waiting to 

receive data from the devices.  

 

 

The starling scenario in Western Australia 

 

Purpose 

 

• Expand our area of surveillance 

• Extend our areas of surveillance into inhospitable areas 

• Facilitate a rapid response to detected incursions 

o Ideally = real-time notification 

o Practically = within 24-48hrs is OK 

 

How many units? 

 

The high risk area currently consists of ~22,000km2 of the south coast region of WA with 

several hundred mapped swamp areas. Starlings are drawn towards these swamps because 

of their high requirement for water and the dead trees often associated with swamps provide 

their preferred nesting habitat. 

 

• “Ideally” we would have units at all of these swamps (assuming detection radius per 

unit of ~300m, would typically require between 2-8 units / swamp. 

• “Practically”, not all areas have adequate 4G coverage (nb: Telstra set to 

decommission 3G in 2024).  It would be relatively easy to identify a priority list of 

areas for acoustic surveillance.  

• For proof-concept: I’d like up to six sites (more than three), with average of ~4 units 

per site = 24-30 units depending on swamp size and detection range. 

• For operational surveillance: More than 12 sites would be preferred, 48-60 units in 

total. 

 

Recording schedule? 

 

Typically starlings flock-up in winter (when their numbers allow it) and roost communally at 

night and feed associatively with livestock during the day (noting they’re never far from fresh 

water).  In early spring through to early autumn they pair up and show nest site fidelity 

throughout the season.  Typically breed twice, but three times in good year.  Nesting sites 

(in WA) are in dead trees in swamps, but as a rule, starlings are very flexible and will nest 

elsewhere if competition for resources is high. 
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• Therefore, most benefit derived from ARUs recording from ~start Sept through to ~end 

March. I have had most success recording starlings at dawn, but calls do become 

mixed in with b/ground of general dawn chorus. General observation is that starlings 

are not the first bird in the chorus, typically beginning their calling close to, or just after, 

sunrise. 

• Recommend starting recording at ~5min before civil sunrise and ideally continuing 

until dusk with on-board processing on the fly only retaining important information. 

• Practically: detecting a starling in WA is a big deal, so missing a detection has 

substantial consequences. We’re trying to prevent, rather than cure, incursions, 

therefore I need to be convinced and confident that on-board processing doesn’t miss 

true positives. Trade-off is that large amounts of data (and false positives) may 

generated and require transmission over network. 

• Therefore, perhaps don’t record all day, may be just an hour or so at dawn. 

 

Technical requirements 

 

If a starling call is detected, I need to be able to place it in context, therefore I require a bit 

of recording (audio and the sonogram) before and after the detection to manually review. 

 

• Ideally – the whole recording 

• Practically - ~5sec before and ~15sec after may suffice. 

 

Currently, the call signatures we’ve focussed on (descending whistle and electric buzz (or 

variation on whistle…see Bureau of Rural sciences final report) are quite high freq (providing 

opportunity to filter out low freq noise like vehicles and livestock), therefore selected 44kHz 

sampling rate.  Consequence is increase in size of data files. On an SM2, stereo recording 

at 44.1kHz: 1hour30min recording = 930,267KB; 25min = 258,431 KB. 

 

Ideally, I’d like a hardy, solar powered unit that listens all day and processes data on-board.  

When a positive detection is returned, unit stores that days file and remotely sends the 

detection +/- 20sec of audio via network to ‘Detect-it’, I receive a notification and I can go in 

and review audio+songogram.  If any one unit is not in 4G range, then it has the capability 

of sending positive detections to neighbouring units that can then relay data to a base station 

for same day transmission of any detections over the network.  If processing has to occur 

off the unit (either cloud-based or other), then it needs to be cost-effective to transmit (daily) 

recordings from units to the point of processing, for this solution I would assume units no 

longer record all day, but just at dawn. 
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Appendix 3. List of bird species recorded in the Western Australian deployment area. 

 

Taken from the Atlas of Living Australia as being within the area bounded by latitudes -30.1 

and -34.7 S and longitudes 118.9 and 129.0 E (downloaded 2022-02-15; FP: predicted 

potential (p) for False Positive starling identifications based on examination of spectrograms 

in the Xeno Canto database; CJ: recorded at Cape Jervis—see Table 1).  

 

Family Genus species Common name FP CJ 

Acanthizidae Acanthiza apicalis Inland Thornbill  no  

Acanthizidae Acanthiza chrysorrhoa Yellow-tail   no  

Acanthizidae Acanthiza inornata Western Thornbill  no  

Acanthizidae Acanthiza iredalei Slender-billed Thornbill  no  

Acanthizidae Acanthiza uropygialis Chestnut-rumped Thornbill  p  

Acanthizidae Acanthiza robustirostris Slaty-backed Thornbill  no  

Acanthizidae Aphelocephala leucopsis Southern Whiteface  p  

Acanthizidae Calamanthus campestris Rufous Fieldwren  no  

Acanthizidae Calamanthus cautus Shy Heathwren  no  

Acanthizidae Gerygone fusca Western Gerygone  no  

Acanthizidae Pyrrholaemus brunneus Redthroat   no  

Acanthizidae Smicrornis brevirostris Weebill   no  

Accipitridae Accipiter fasciatus Brown Goshawk  no  

Accipitridae Accipiter cirrocephalus Collared Sparrowhawk  no  

Accipitridae Aquila audax Wedge-tailed Eagle  no  

Accipitridae Circus approximans Kahu   no  

Accipitridae Circus assimilis Spotted Harrier  no  

Accipitridae Elanus axillaris Black-shouldered Kite  no  

Accipitridae Elanus scriptus Letter-winged Kite  no  

Accipitridae Haliaeetus leucogaster white-bellied sea-eagle  no  

Accipitridae Haliastur sphenurus Whistling Kite  p  

Accipitridae Hamirostra melanosternon Black-breasted Buzzard  no  

Accipitridae Hieraaetus morphnoides Little Eagle  no  

Accipitridae Lophoictinia isura Square-tailed Kite  no  

Acrocephalidae Acrocephalus australis Australian Reed Warbler no  

Aegothelidae Aegotheles cristatus Australian Owlet-nightjar  p  

Alcedinidae Dacelo novaeguineae Kookaburra   no  

Alcedinidae Todiramphus pyrrhopygius Red-backed Kingfisher  no  

Alcedinidae Todiramphus sanctus Sacred Kingfisher  no  

Apodidae Apus pacificus Fork-tailed Swift  no  

Artamidae Artamus cinereus Black-faced Woodswallow  no  

Artamidae Artamus cyanopterus Dusky Woodswallow  no  

Artamidae Artamus minor Little Woodswallow  no  

Artamidae Artamus personatus Masked Woodswallow  no  

Artamidae Artamus superciliosus White-browed Woodswallow  no  

Artamidae Cracticus nigrogularis Pied Butcherbird  no  

Artamidae Cracticus torquatus Grey Butcherbird  no  
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Family Genus species Common name FP CJ 

Artamidae Gymnorhina tibicen Australian Magpie  no CJ 

Artamidae Strepera versicolor Grey Currawong  no  

Atrichornithidae Atrichornis clamosus Noisy Scrub-bird  no  

Burhinidae Burhinus grallarius Bush Stone-curlew  no  

Cacatuidae Cacatua pastinator Western Corella  no  

Cacatuidae Cacatua sanguinea Little Corella  no  

Cacatuidae Calyptorhynchus banksii Red-tailed Black Cockatoo no  

Cacatuidae Calyptorhynchus baudinii Long-billed Black-cockatoo  no  

Cacatuidae Calyptorhynchus latirostris Carnaby's Black-cockatoo  no  

Cacatuidae Eolophus roseicapilla Galah   no CJ 

Cacatuidae Lophochroa leadbeateri Major Mitchell's Cockatoo no  

Cacatuidae Nymphicus hollandicus Cockatiel   no  

Campephagidae Coracina novaehollandiae Black-faced Cuckoo-shrike  no  

Campephagidae Coracina maxima Ground Cuckoo-shrike  no  

Caprimulgidae Eurostopodus argus Spotted Nightjar  no  

Casuariidae Dromaius novaehollandiae Emu  no  

Charadriidae Vanellus miles Masked Lapwing  no  

Charadriidae Vanellus tricolor Banded Lapwing  no  

Climacteridae Climacteris rufa Rufous Treecreeper  no  

Climacteridae Climacteris affinis White-browed Treecreeper  no  

Columbidae Columba livia Rock Dove  no  

Columbidae Geopelia cuneata Diamond Dove  no  

Columbidae Geopelia striata Peaceful Dove  no  

Columbidae Ocyphaps lophotes Crested Pigeon  no  

Columbidae Phaps chalcoptera Common Bronzewing  no CJ 

Columbidae Phaps elegans Brush Bronzewing  no  

Columbidae Streptopelia chinensis Spotted Turtle-dove  no  

Columbidae Streptopelia senegalensis Laughing Turtle-dove  no  

Corvidae Corvus bennetti Little Crow  no CJ 

Corvidae Corvus coronoides Australian Raven  no CJ 

Corvidae Corvus orru Torresian Crow  no  

Cuculidae Cacomantis flabelliformis Fan-tailed Cuckoo  no  

Cuculidae Cacomantis pallidus Pallid Cuckoo  no  

Cuculidae Chalcites basalis Horsfield's Bronze-cuckoo  no  

Cuculidae Chalcites lucidus Shining Bronze-cuckoo  no  

Cuculidae Chalcites osculans Black-eared Cuckoo  no  

Cuculidae Chrysococcyx lucidus Shining Cuckoo  no  

Dasyornithidae Dasyornis longirostris Western Bristlebird  no  

Estrildidae Stagonopleura oculata Red-eared Firetail  p  

Estrildidae Taeniopygia guttata Zebra Finch  no  

Falconidae Falco longipennis Australian Hobby  no  

Falconidae Falco hypoleucos Grey Falcon  no  

Falconidae Falco peregrinus Peregrine Falcon  no  

Falconidae Falco subniger Black Falcon  no  
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Family Genus species Common name FP CJ 

Falconidae Falco berigora Brown Falcon  no  

Falconidae Falco cenchroides Nankeen Kestrel  no CJ 

Hirundinidae Cheramoeca leucosterna White-backed Swallow  no  

Hirundinidae Hirundo neoxena Welcome Swallow  no  

Hirundinidae Petrochelidon nigricans Tree Martin  no  

Hirundinidae Petrochelidon ariel Fairy Martin  no  

Maluridae Amytornis striatus Striated Grasswren  no  

Maluridae Malurus assimilis Purple-back Fairy-wren no  

Maluridae Malurus elegans Red-winged Fairy-wren  no  

Maluridae Malurus pulcherrimus Blue-breasted Fairy-wren  no  

Maluridae Malurus splendens Splendid Fairy-wren  no  

Maluridae Malurus leucopterus White-winged Fairy-wren  no  

Maluridae Stipiturus malachurus Southern Emu-wren  no  

Megaluridae Cincloramphus cruralis Brown Songlark  no  

Megaluridae Cincloramphus mathewsi Rufous Songlark  no  

Megaluridae Megalurus gramineus Little Grassbird  no  

Megapodiidae Leipoa ocellata Malleefowl   no  

Meliphagidae Acanthagenys rufogularis Spiny-cheeked Honeyeater  no  

Meliphagidae Acanthorhynchus superciliosus Western Spinebill  no  

Meliphagidae Anthochaera lunulata Western Wattlebird  no  

Meliphagidae Anthochaera carunculata Red Wattlebird  no CJ 

Meliphagidae Certhionyx variegatus Pied Honeyeater  no  

Meliphagidae Epthianura aurifrons Orange Chat  no  

Meliphagidae Epthianura albifrons White-fronted Chat  no  

Meliphagidae Epthianura tricolor Crimson Chat  p  

Meliphagidae Gavicalis virescens Singing Honeyeater  no CJ 

Meliphagidae Gliciphila melanops Tawny-crowned Honeyeater  no  

Meliphagidae Lichenostomus cratitius Purple-gaped Honeyeater  no  

Meliphagidae Lichmera indistincta Brown Honeyeater  no  

Meliphagidae Manorina flavigula Yellow-throated Miner  no  

Meliphagidae Melithreptus brevirostris Brown-headed Honeyeater  no  

Meliphagidae Melithreptus chloropsis Swan River Honeyeater no  

Meliphagidae Nesoptilotis leucotis White-eared Honeyeater  no  

Meliphagidae Phylidonyris niger White-cheeked Honeyeater  no  

Meliphagidae Phylidonyris novaehollandiae New Holland Honeyeater no CJ 

Meliphagidae Ptilotula ornata Yellow-plumed Honeyeater  no CJ 

Meliphagidae Ptilotula plumula Grey-fronted Honeyeater  no  

Meliphagidae Purnella albifrons White-fronted Honeyeater  no  

Meliphagidae Sugomel niger Black Honeyeater  no  

Meropidae Merops ornatus Rainbow Bee-eater  no  

Monarchidae Grallina cyanoleuca Magpie-lark   no CJ 

Monarchidae Myiagra cyanoleuca Satin Flycatcher  p  

Monarchidae Myiagra inquieta Restless Flycatcher  no  

Nectariniidae Dicaeum hirundinaceum Mistletoebird   no  
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Family Genus species Common name FP CJ 

Neosittidae Daphoenositta chrysoptera Varied Sittella  no  

Oreoididae Oreoica gutturalis Crested Bellbird  no  

Otididae Ardeotis australis Wild Turkey  no  

Pachycephalidae Colluricincla harmonica Grey Shrike-thrush  no CJ 

Pachycephalidae Falcunculus frontatus Crested Shrike-tit  no  

Pachycephalidae Pachycephala rufiventris Rufous Whistler  no  

Pachycephalidae Pachycephala occidentalis Western Whistler  no  

Pachycephalidae Pachycephala inornata Gilbert's Whistler  no  

Pardalotidae Pardalotus striatus Striated Pardalote  no  

Pardalotidae Pardalotus punctatus Spotted Pardalote  no  

Petroicidae Drymodes brunneopygia Southern Scrub-robin  no  

Petroicidae Eopsaltria griseogularis Western Yellow Robin no  

Petroicidae Eopsaltria georgiana White-breasted Robin  no  

Petroicidae Melanodryas cucullata Hooded Robin  no  

Petroicidae Microeca fascinans Jacky Winter  no  

Petroicidae Petroica boodang Scarlet Robin  no  

Petroicidae Petroica goodenovii Red-capped Robin  no  

Phasianidae Coturnix pectoralis Grey Quail  no  

Phasianidae Coturnix ypsilophora Swamp Quail  no  

Podargidae Podargus strigoides Tawny Frogmouth  no  

Pomatostomidae Pomatostomus superciliosus White-browed Babbler  no  

Psittacidae Barnardius zonarius Australian Ringneck  no  

Psittacidae Melopsittacus undulatus Budgerigar   no  

Psittacidae Neophema elegans Elegant Parrot  no  

Psittacidae Neophema petrophila Rock Parrot  no  

Psittacidae Neophema splendida Scarlet-chested Parrot  no  

Psittacidae Northiella narethae Naretha Parrot  no  

Psittacidae Parvipsitta porphyrocephala Purple-crowned Lorikeet  p CJ 

Psittacidae Platycercus icterotis Western Rosella  no  

Psittacidae Polytelis anthopeplus Regent Parrot  no  

Psittacidae Psephotus varius Mulga Parrot  no  

Psittacidae Purpureicephalus spurius Red-capped Parrot  no  

Psittacidae Trichoglossus haematodus Rainbow Lorikeet  p CJ 

Psophodidae Cinclosoma clarum Copperback Quail-thrush no  

Psophodidae Cinclosoma castaneothorax Chestnut-breasted Quail-thrush  p  

Psophodidae Cinclosoma cinnamomeum Cinnamon Quail-thrush  no  

Psophodidae Psophodes nigrogularis Western Whipbird  no  

Rhipiduridae Rhipidura albiscapa Grey Fantail  no CJ 

Rhipiduridae Rhipidura leucophrys Willie Wagtail  no  

Strigidae Ninox connivens Barking Owl  no  

Strigidae Ninox novaeseelandiae Southern Boobook  no  

Sturnidae Acridotheres tristis Common Myna  no  

Timaliidae Zosterops lateralis Silvereye   no  

Turnicidae Turnix velox Little Button-quail  no  
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Family Genus species Common name FP CJ 

Turnicidae Turnix varius Painted Button-quail  no  

Tytonidae Tyto novaehollandiae Masked Owl  no  

Tytonidae Tyto javanica Eastern Barn Owl no  

Tytonidae Tyto alba Barn Owl  no  

 

 





INVASIVES.COM.AU

Centre for Invasive Species Solutions
Building 22, University of Canberra
University Drive South, BRUCE ACT 2617
T 02 6201 2887
E communications@invasives.com.au


	T002 Stitch cover
	T002
	T002
	Invasives Portfolio 1 cover_P01-T-002
	T002 Stitch ready
	Introduction
	Early detection is vital for biosecurity responses
	Acoustic detection can improve the footprint of pest surveillance
	Keeping Western Australia starling-free
	Objectives

	Methods
	Integrating automated acoustic recording units into landscape-scale invasive animal control programs
	Developing a comprehensive starling call reference library
	Training the model to recognise starling calls

	Software resources
	Creating and training the starling-detection algorithm
	Adding extra functions to the field device

	Developing a user interface that meets program and user needs
	On-board processing and remote communications eliminate the need for regular site visits
	Testing the acoustic recording units’ communications, algorithm performance and microphone sensitivity

	Results
	Refining the CNN detection algorithm
	Low detection and high false-positive rates for first iteration of starling algorithm
	Probability of detection increases with model 2 after retraining with calls that model1 failed to identify.
	Model 3 was re-trained with non-target signals from archived WA recordings
	Starlings model training code was used as a blueprint for call detection of other species

	Automated starling acoustic recording units can detect calls up to 70 m and record calls at 150 m away
	Detect-It user interface
	Application
	Expanding the footprint of traditional surveillance


	Discussion
	The next steps for the project team
	Starling CNN model has broadscale potential for other species of interest
	What have we learned?
	Remote, fully automated acoustic detection is possible
	Secure, permanent infrastructure is easy to use
	Accurate, precise and reliable automated data analysis is possible


	References
	Appendix 1. Specialised zoological detailed final report


	T-002Appendix




